Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Electrical and Computer Engineering

Hydrodynamics

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Dynamical Thermal Conductivity Of Suspended Graphene Ribbons In The Hydrodynamic Regime, Zlatan Aksamija, Arnab K. Majee Jul 2018

Dynamical Thermal Conductivity Of Suspended Graphene Ribbons In The Hydrodynamic Regime, Zlatan Aksamija, Arnab K. Majee

Zlatan Aksamija

The steady-state behavior of thermal transport in bulk and nanostructured semiconductors has been widely
studied, both theoretically and experimentally. On the other hand, fast transients and frequency dynamics of
thermal conduction has been given less attention. The frequency response of thermal conductivity has become
more crucial in recent years, especially in light of the constant rise in the clock frequencies in microprocessors
and terahertz sensing applications. Thermal conductivity in response to a time-varying temperature field starts
decaying when the frequency exceeds a cutoff frequency Omega_c, which is related to the inverse of phonon relaxation time τ, on the order of …


Streaming Potential Generated By A Pressure-Driven Flow Over Superhydrophobic Stripes, Hui Zhao Jan 2011

Streaming Potential Generated By A Pressure-Driven Flow Over Superhydrophobic Stripes, Hui Zhao

Mechanical Engineering Faculty Research

The streaming potential generated by a pressure-driven flow over a weakly charged slip-stick surface [the zeta potential of the surface is smaller than the thermal potential (25 mV)] with an arbitrary double layer thickness is theoretically studied by solving the Debye–Huckel equation and Stokes equation. A series solution of the streaming potential is derived. Approximate expressions for the streaming potential in the limits of thin double layers and thick double layers are also given in excellent agreement with the full solution. To understand the impact of the slip, the streaming potential is compared against that over a homogeneously charged smooth …


On The Effect Of Hydrodynamic Slip On The Polarization Of A Nonconducting Spherical Particle In An Alternating Electric Field, Hui Zhao Jan 2010

On The Effect Of Hydrodynamic Slip On The Polarization Of A Nonconducting Spherical Particle In An Alternating Electric Field, Hui Zhao

Mechanical Engineering Faculty Research

The polarization of a charged, dielectric, spherical particle with a hydrodynamically slipping surface under the influence of a uniform alternating electric field is studied by solving the standard model (the Poisson–Nernst–Planck equations). The dipole moment characterizing the strength of the polarization is computed as a function of the double layer thickness, the electric field frequency, the particle’s surface charge, and the slip length. Our studies reveal that two processes contribute to the dipole moment: ion transport inside the double layer driven by the electric field and the particle’s electrophoretic motion. The hydrodynamic slip will simultaneously impact both processes. In the …