Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Nanoscience and Nanotechnology

Exploring Magneto-Excitons In Bulk And Mono-Layer Semiconductors Using Non-Linear Spectroscopy Techniques, Varun Mapara Mar 2022

Exploring Magneto-Excitons In Bulk And Mono-Layer Semiconductors Using Non-Linear Spectroscopy Techniques, Varun Mapara

USF Tampa Graduate Theses and Dissertations

The research in two-dimensional (2D) materials has evolved from ``traditional" quantum wells based on group III-V and II-VI semiconductors to atomically thin sheets of van der Waals materials such as 2D semiconducting Transition Metal Dichalcogenides (TMDs). These 2D materials remain a stimulating field that continues to introduce new challenges. From both a fundamental physics and technological perspective, magneto-optical spectroscopy has been an essential tool in this research field. TMDs, for example, pose the challenge of characterizing their spin-valley-resolved physics and deriving implications in quantum computation and information research. With the discovery of valley Zeeman effects, the spin-valley physics of TMDs …


Physical Electronic Properties Of Self-Assembled 2d And 3d Surface Mounted Metal-Organic Frameworks, Radwan Elzein Nov 2018

Physical Electronic Properties Of Self-Assembled 2d And 3d Surface Mounted Metal-Organic Frameworks, Radwan Elzein

USF Tampa Graduate Theses and Dissertations

Metal-organic frameworks stand at the frontiers of molecular electronic research because they combine desirable physical properties of organic and inorganic components. They are crystalline porous solids constructed by inorganic nodes coordinated to organic ligands to form 1D, 2D, or 3D structures. They possess unique characteristics such as ultrahigh surface area crystal lattices up to 10000 m2 g-1, and tunable nanoporous sizes ranging from 0.2 to 50 nm. Their unprecedented structural diversity and flexibility beyond solid state materials can lead to unique properties such as tailorable electronic and ionic conductivity which can serve as interesting platforms for a …


Confinement Effects And Magnetic Interactions In Magnetic Nanostructures, Kristen Lee Stojak Repa Nov 2016

Confinement Effects And Magnetic Interactions In Magnetic Nanostructures, Kristen Lee Stojak Repa

USF Tampa Graduate Theses and Dissertations

Multifunctional nanocomposites are promising for a variety of applications ranging from microwave devices to biomedicine. High demand exists for magnetically tunable nanocomposite materials. My thesis focuses on synthesis and characterization of novel nanomaterials such as polymer nanocomposites (PNCs) and multi-walled carbon nanotubes (MWCNTs) with magnetic nanoparticle (NP) fillers.

Magnetite (Fe3O4) and cobalt ferrite (CoFe2O4) NPs with controlled shape, size, and crystallinity were successfully synthesized and used as PNC fillers in a commercial polymer provided by the Rogers Corporation and poly(vinylidene fluoride). Magnetic and microwave experiments were conducted under frequencies of 1-6 GHz in the presence of …


Preparation And Characterization Of Van Der Waals Heterostructures, Horacio Coy Diaz Jun 2016

Preparation And Characterization Of Van Der Waals Heterostructures, Horacio Coy Diaz

USF Tampa Graduate Theses and Dissertations

In this dissertation different van der Waals heterostructures such as graphene-MoS2 and MoTe2-MoS2 were prepared and characterized. In the first heterostructure, polycrystalline graphene was synthesized by chemical vapor deposition and transferred on top of MoS2 single crystal. In the second heterostructure, MoTe2 monolayers were deposited on MoS2 by molecular beam epitaxy.

Characterization of graphene-MoS2 heterostructures was conducted by spin and angle resolve spectroscopy which showed that the electronic structure of the bulk MoS2 and graphene in this van der Waals heterostructures is modified. For MoS2 underneath the graphene, a band …


The Soft Mode Driven Dynamics Of Ferroelectric Perovskites At The Nanoscale: An Atomistic Study, Kevin Mccash May 2014

The Soft Mode Driven Dynamics Of Ferroelectric Perovskites At The Nanoscale: An Atomistic Study, Kevin Mccash

USF Tampa Graduate Theses and Dissertations

The discovery of ferroelectricity at the nanoscale has incited a lot of interest in perovskite ferroelectrics not only for their potential in device application but also for their potential to expand fundamental understanding of complex phenomena at very small size scales. Unfortunately, not much is known about the dynamics of ferroelectrics at this scale. Many of the widely held theories for ferroelectric materials are based on bulk dynamics which break down when applied to smaller scales. In an effort to increase understanding of nanoscale ferroelectric materials we use atomistic resolution computational simulations to investigate the dynamics of polar perovskites. Within …


Magnetization Dynamics And Related Phenomena In Nanostructures, Sayan Chandra Jan 2013

Magnetization Dynamics And Related Phenomena In Nanostructures, Sayan Chandra

USF Tampa Graduate Theses and Dissertations

Collective magnetic behavior in nanostructures is a phenomenon commonly observed in various magnetic systems. It arises due to competing inter/intra–particle interactions and size distribution and can manifest in phenomena like magnetic freezing, magnetic aging, and exchange bias (EB) effect. In order to probe these rather complex phenomena, conventional DC and AC magnetic measurements have been performed along with radio–frequency transverse susceptibility (TS) measurements. We also demonstrate the magnetic entropy change as a parameter sensitive to subtle changes in the magnetization dynamics of nanostructures. The focus of this dissertation is to study the collective magnetic behavior in core-shell nanostructures of Fe/γ–Fe …


Multidimensional Spectroscopy Of Semiconductor Quantum Dots, Jason Michael Bylsma Mar 2012

Multidimensional Spectroscopy Of Semiconductor Quantum Dots, Jason Michael Bylsma

USF Tampa Graduate Theses and Dissertations

The coherent properties of semiconductor nanostructures are inherently difficult to measure and one-dimensional spectroscopies are often unable to separate inhomogeneous and homogeneous linewidths. We have refined and improved a method of performing multidimensional Fourier transform spectroscopy based on four-wave

mixing (FWM) experiments in the box geometry. We have modified our system with broadband beamsplitters in all interferometer arms, high-resolution translation stages and the ability to work in reflection geometry. By improving the phase-stability of our setup and scanning pulse delays with sub-optical cycle precision, we are able to

reproduce 2DFT spectra of GaAs multiple quantum wells. With the FWM signal …