Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

The Effects Of Curing Temperature On The Hydration Kinetics Of Plain And Fly Ash Pastes And Compressive Strength Of Corresponding Mortars With And Without Nano-Tio2 Addition., Dan Huang, Mirian Velay-Lizancos, Jan Olek Jul 2022

The Effects Of Curing Temperature On The Hydration Kinetics Of Plain And Fly Ash Pastes And Compressive Strength Of Corresponding Mortars With And Without Nano-Tio2 Addition., Dan Huang, Mirian Velay-Lizancos, Jan Olek

International Conference on Durability of Concrete Structures

Incorporation of fly ash in cementitious systems containing ordinary portland cement (OPC) increases their long-term strength and durability. However, replacement of cement by fly ash also reduces the heat of hydration of such systems and reduces early-age strength development. The reduced rate of strength development can increase the risk of durability problems, e.g. scaling, in cases when young concrete is exposed to low temperatures and deicing chemicals. This study investigated the potential of nano-titanium dioxide (nano-TiO2) particles to modify the hydration kinetics of fly ash pastes and compressive strength development of corresponding mortars cured under low (4°C) and …


Transport Properties And Strength Development Of Blended Cement Mortars Containing Nano-Silica, Ali Akbar Ramezanianpour, Sajjad Mirvalad, Mehrdad Mortezaei Nov 2019

Transport Properties And Strength Development Of Blended Cement Mortars Containing Nano-Silica, Ali Akbar Ramezanianpour, Sajjad Mirvalad, Mehrdad Mortezaei

International Conference on Durability of Concrete Structures

In the present study, the mechanical properties and durability of blended cement mortars containing nanosilica and natural pozzolans is investigated. Trass and pumice, two different Iranian natural pozzolan, are used in the experiments. For cement blends preparation, nano-silica replacement levels of 2, 3 and 4% by mass of cement was considered; each mixture contained one of the natural pozzolans with a fixed replacement percentage of 15. The Standard mortar samples were made with w/cm ratio of 0.485; the flow of all mortars ranged from 14 to 16 cm. All prepared mortars’ samples were cured in saturated limewater until the test …


Crystalline Cellulose – Atomistic Modeling Toolkit, Mateo Gomez, Pablo Zavattieri Dr. Oct 2013

Crystalline Cellulose – Atomistic Modeling Toolkit, Mateo Gomez, Pablo Zavattieri Dr.

The Summer Undergraduate Research Fellowship (SURF) Symposium

Nature has created efficient strategies to make materials with hierarchical internal structure that often exhibit exceptional mechanical properties. One such example is found in cellulose, in fact it is eight times stronger than stainless steel and advantage is that cellulose incredibly cheap, because processing is obtained from purified wood pulp (it is environmental friendly). The most prevalent modeling technique to study the fundamental mechanical behavior of the crystalline cellulose has been Molecular Dynamics (MD). As a predictive tool, MD allows us to study the behavior of crystalline cellulose at the atomic level, and as such, it accurately predicts the crystalline …