Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 29 of 29

Full-Text Articles in Nanoscience and Nanotechnology

Impact Of Substrate And Process On The Electrical Performance Of Screen-Printed Nickel Electrodes: Fundamental Mechanism Of Ink Film Roughness, Bilge N. Altay, Jerome Jourdan, Vikram S. Turkani, Hervé Dietsch, Dinesh Maddipatla, Alexandra Pekarovicova, Paul D. Fleming, Massood Atashbar Nov 2018

Impact Of Substrate And Process On The Electrical Performance Of Screen-Printed Nickel Electrodes: Fundamental Mechanism Of Ink Film Roughness, Bilge N. Altay, Jerome Jourdan, Vikram S. Turkani, Hervé Dietsch, Dinesh Maddipatla, Alexandra Pekarovicova, Paul D. Fleming, Massood Atashbar

Bilge Nazli Altay

In recent years, traditional printing methods have been integrated to print flexible electronic devices and circuits. Since process requirements for electronics diff er from those for graphic printing, the fundamentals require rediscovery mainly to optimize manufacturing techniques and to find cost reduction methods without compromising functional performance. In addition, alternative inks need to be formulated to increase the variety of functional inks and to pioneer new product developments. In this report, we investigate a thermoplastic-based nickel ink prototype to print electrodes using a screen-printing process. Process fundamentals are explored, and cost reduction methods are addressed by studying …


Au@Tio2 Nanocomposites For The Catalytic Degradation Of Methyl Orange And Methylene Blue: An Electron Relay Effect, Mohammad Mansoob Khan Dr, J. Lee, M. H. Cho Aug 2014

Au@Tio2 Nanocomposites For The Catalytic Degradation Of Methyl Orange And Methylene Blue: An Electron Relay Effect, Mohammad Mansoob Khan Dr, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Au@TiO2 nanocomposites were used for the catalytic degradation of methyl orange and methylene blue by NaBH4. A detail pathway for step by step reduction, oxidation and complete mineralization of intermediates into the respective end-products was established by UV-vis spectroscopy, chemical oxygen demand, ion chromatography and cyclic voltammetry (CV). CV studies confirmed that the dyes were reduced and oxidized to the end-products by NaBH4 in the presence of Au@TiO2 nanocomposites and O2•, •OH and HO2• radicals generated in-situ. Results suggest that Au@TiO2 nanocomposites not only assist in the decolorization of dyes, but also promote their complete mineralization into harmless end-products.


Highly Visible Light Active Ag@Zno Nanocomposites Synthesized By Gel-Combustion Route, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. H. Cho Aug 2014

Highly Visible Light Active Ag@Zno Nanocomposites Synthesized By Gel-Combustion Route, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Highly visible light active 1% and 3% Ag@ZnO nanocomposites were synthesized via a gel combustion route using citric acid as a fuel. The formation of the nanocomposites with enhanced properties was confirmed using a range of characterization techniques, photocatalysis and photoelectrochemical studies. Compared to the pristine ZnO nanoparticles, the Ag@ZnO nanocomposites exhibited enhanced visible light photocatalytic activity for the degradation of methylene blue and photoelectrochemical response. A mechanism was proposed to account for the photocatalytic activities of the Ag@ZnO nanocomposite that showed the surface plasmon resonance (SPR) of Ag is an effective way of enhancing the visible light photocatalytic activities.


Ptsa Doped Conducting Graphene/Polyaniline Nanocomposite Fibers: Thermoelectric Behavior And Electrode Analysis, Mohammad Mansoob Khan Dr, M. O. Ansari, S. A. Ansari, M. I. Amal, J Lee, M. H. Cho Apr 2014

Ptsa Doped Conducting Graphene/Polyaniline Nanocomposite Fibers: Thermoelectric Behavior And Electrode Analysis, Mohammad Mansoob Khan Dr, M. O. Ansari, S. A. Ansari, M. I. Amal, J Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Highly conducting graphene/polyaniline (GN@Pani) nanocomposite was prepared by the in-situ oxidative polymerization of aniline in the presence of GN and the surfactant, cetyltrimethylammonium bromide (CTAB). The micellar structure of CTAB assisted both, the formation of GN@Pani tubules and the dispersion of GN. Sheet-like GN was distributed uniformly in the Pani matrix, leading to high electrical conductivity because of the π-π interactions between Pani and GN. Studies of the thermoelectrical behavior using isothermal and cyclic aging techniques showed that GN@Pani possessed a high combination of electrical conductivity and thermal stability, even beyond 150°C. GN@Pani was used as cathode active material in …


Electrochemical And Metal-Phase Processes Accompanying Hydrogen Absorption In Aluminum During Aqueous Corrosion, Kurt R. Hebert, Ömer Ö. Çapraz, Pranav Shrotriya, Guiping Zhang Mar 2014

Electrochemical And Metal-Phase Processes Accompanying Hydrogen Absorption In Aluminum During Aqueous Corrosion, Kurt R. Hebert, Ömer Ö. Çapraz, Pranav Shrotriya, Guiping Zhang

Ömer Özgür Çapraz

Alkaline corrosion of aluminum results in large supersaturations of hydrogen, and formation of hydride and subsurface voids.1-4 Aluminum itself is not susceptible to stress corrosion cracking (SCC), but hydrogen and hydride effects are significant for SCC mechanisms on Al and Mg alloys. Chu found evidence that corrosion-induced tensile stress in several alloys additively combines with external tensile stress to promote SCC, and attributed the former to lattice contraction associated with vacancies injected during corrosion.5 Evidence for vacancy injection on Al was found from X-ray diffraction and in situ curvature measurements on Al thin films undergoing corrosion.1,6 Here we report new …


Highly Photoactive Sno2 Nanostructures Engineered By Electrochemically Active Biofilm, S. A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho Feb 2014

Highly Photoactive Sno2 Nanostructures Engineered By Electrochemically Active Biofilm, S. A. Ansari, Mohammad Mansoob Khan Dr, M. O. Ansari, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

This paper reports the defect-induced band gap narrowing of pure SnO2 nanostructures (p-SnO2) using an electrochemically active biofilm (EAB). The proposed approach is biogenic, simple and green. Systematic characterization of the modified SnO2 nanostructures (m-SnO2) revealed EAB-mediated defects in pure SnO2 nanostructures (p-SnO2). m-SnO2 nanostructures in visible light showed the enhanced photocatalytic degradation of p-nitrophenol and methylene blue compared to p-SnO2 nanostructures. Photoelectrochemical studies, such as electrochemical impedance spectroscopy and linear scan voltammetry, also revealed a significant increase in the visible light response of m-SnO2 compared to p-SnO2 nanostructures. The enhanced activities of m-SnO2 in visible light was attributed to …


Enhanced Thermoelectric Performance And Ammonia Sensing Properties Of Sulfonated Polyaniline/Graphene Thin Films,, M. O. Ansari, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. I. Amal, M H. Cho Jan 2014

Enhanced Thermoelectric Performance And Ammonia Sensing Properties Of Sulfonated Polyaniline/Graphene Thin Films,, M. O. Ansari, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. I. Amal, M H. Cho

Dr. Mohammad Mansoob Khan

Highly conducting nanocomposite film of polyaniline (Pani) with graphene (GN) was prepared by incorporating GN nanoplatelets in Pani matrix, followed by sulfonating it with fuming sulfuric acid. Sheet-like GN nanoplatelets were distributed uniformly in a Pani matrix, leading to high electrical conductivity due to π-π interaction between sulfonated Pani (s-Pani) and GN. Studies of the thermoelectrical behavior and ammonia-sensing behavior on GN@s-Pani showed high DC electrical conductivity retention under ageing conditions as well as excellent reproducible sensing response towards ammonia vapor in contrast to acid-protonated Pani.


Band Gap Engineered Tio2 Nanoparticles For Visible Light Induced Photoelectrochemical And Photocatalytic Studies, Mohammad Mansoob Khan Dr, S A. Ansari, D Pradhan, D H. Han, J Lee, M. H. Cho Dec 2013

Band Gap Engineered Tio2 Nanoparticles For Visible Light Induced Photoelectrochemical And Photocatalytic Studies, Mohammad Mansoob Khan Dr, S A. Ansari, D Pradhan, D H. Han, J Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Visible light-active TiO2 (m-TiO2) nanoparticles were obtained by an electron beam treatment of commercial TiO2 (p-TiO2) nanoparticles. The m-TiO2 nanoparticles exhibited a distinct red-shift in the UV-visible absorption spectrum and a much narrower band gap (2.85 eV) due to defects as confirmed by diffuse reflectance spectroscopy (DRS), photoluminescence (PL), X-ray diffraction, Raman spectroscopy, electron paramagnetic resonance, transmission electron microscopy, X-ray photoelectron spectroscopy (XPS), electrochemical impedance spectroscopy (EIS) and linear scan voltammetry (LSV). The XPS revealed changes in the surface states, composition, Ti4+ to Ti3+ ratio, and oxygen deficiencies in the m-TiO2. The valence band XPS, DRS and PL results were …


Optimization Of Gold Nanoparticles Synthesis By Stainless Steel For H2o2 And Glucose Detection, T. H. Han, Mohammad Mansoob Khan Dr, J. Lee, M. H. Cho Sep 2013

Optimization Of Gold Nanoparticles Synthesis By Stainless Steel For H2o2 And Glucose Detection, T. H. Han, Mohammad Mansoob Khan Dr, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

The synthesis of (+)AuNPs procedure using a stainless-steel mesh was optimized. The optimal synthetic parameters were found to be one piece of stainless-steel mesh (22.5 cm2 in surface area) in 100 mL of a 1 mM precursor, precursor solution pH 4, and reaction temperature of 30°C. Under the optimal conditions, the as-synthesized (+)AuNPs were highly positively charged (+24.2 mV). Therefore, the as-synthesized (+)AuNPs act as a peroxidase mimic and provide a simple, fast, highly sensitive and selective colorimetric method for H2O2 detection with a detection limit of 0.06 mM in the linear range from 0.06 mM to 4.29 mM.


Oxygen Vacancy Induced Band Gap Narrowing Of Zno Nanostructure By Electrochemically Active Biofilm, Mohammad Mansoob Khan Dr, A. A. Ansari, S. Kalathil, A. Nisar, J. Lee, M. H. Cho Jul 2013

Oxygen Vacancy Induced Band Gap Narrowing Of Zno Nanostructure By Electrochemically Active Biofilm, Mohammad Mansoob Khan Dr, A. A. Ansari, S. Kalathil, A. Nisar, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

Band gap narrowing is important and advantageous for potential visible light photocatalytic applications involving metal oxide nanostructures. This paper reports simple biogenic approach for the promotion of oxygen vacancies in pure zinc oxide (p-ZnO) nanostructures using an electrochemically active biofilm (EAB), which is different from traditional techniques for narrowing the band gap of nanomaterials. The novel protocol improved the visible photocatalytic activity of modified ZnO (m-ZnO) nanostructures through the promotion of oxygen vacancies, which resulted in band gap narrowing of the ZnO nanostructure (Eg = 3.05 eV) without dopants. X-ray diffraction, UV-visible diffuse reflectance spectroscopy, x-ray photoelectron spectroscopy, electron paramagnetic …


Novel Ag@Tio2 Nanocomposite Synthesized By Electrochemically Active Biofilm For Nonenzymatic Hydrogen Peroxide Sensor, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. H. Cho Jul 2013

Novel Ag@Tio2 Nanocomposite Synthesized By Electrochemically Active Biofilm For Nonenzymatic Hydrogen Peroxide Sensor, Mohammad Mansoob Khan Dr, S. A. Ansari, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

A novel nonenzymatic sensor for H2O2 was developed based on an Ag@TiO2 nanocomposite synthesized using a simple and cost effective approach with an electrochemically active biofilm. The optical, structural, morphological and electrochemical properties of the as-prepared Ag@TiO2 nanocomposite were examined by UV-vis spectroscopy, x-ray diffraction, transmission electron microscopy and cyclic voltammetry (CV). The Ag@TiO2 nanocomposite was fabricated on a glassy carbon electrode (GCE) and their electrochemical performance was analyzed by CV, differential pulse voltammetry and electrochemical impedance spectroscopy. The Ag@TiO2 nanocomposite modified GCE (Ag@TiO2/GCE) displayed excellent performance towards H2O2 sensing at −0.73 V in the linear response range from 0.83 …


Simultaneous Enhancement Of The Methylene Blue Degradation And Power Generation In Microbial Fuel Cell By Gold Nanoparticles, Mohammad Mansoob Khan Dr, T. H. Han, S. Kalathil, J. Lee, M. H. Cho May 2013

Simultaneous Enhancement Of The Methylene Blue Degradation And Power Generation In Microbial Fuel Cell By Gold Nanoparticles, Mohammad Mansoob Khan Dr, T. H. Han, S. Kalathil, J. Lee, M. H. Cho

Dr. Mohammad Mansoob Khan

This study examined the effect of positively charged gold nanoparticles ((+)AuNPs) on the enhancement of methylene blue (MB) degradation in microbial fuel cell (MFC) cathode. The maximum electricity production of 36.56 mW/m2 and complete MB degradation were achieved simultaneously. The MFC performance and MB degradation are strictly dependent on cathodic conditions, such as N2 bubbling, air bubbling and addition of H2O2. MB was reduced rapidly under anaerobic condition, whereas complete oxidative mineralization of MB occurred in the presence of dissolved oxygen (DO) or H2O2. (+)AuNPs enhanced the electricity generation in the MFCs involving MB degradation owing to its electron relay …


Production Of Bioelectricity, Bio-Hydrogen, High Value Chemicals And 3 Bioinspired Nanomaterials By Electrochemically Active Biofilms, S. Kalathil, Mohammad Mansoob Khan Dr, M. H. Cho, J. Lee May 2013

Production Of Bioelectricity, Bio-Hydrogen, High Value Chemicals And 3 Bioinspired Nanomaterials By Electrochemically Active Biofilms, S. Kalathil, Mohammad Mansoob Khan Dr, M. H. Cho, J. Lee

Dr. Mohammad Mansoob Khan

Microorganisms naturally form biofilms on solid surfaces for their mutual benefits including protection from environmental stresses caused by contaminants, nutritional depletion or imbalances. The biofilms are normally dangerous to human health due to their inherited robustness. On the other hand, a recent study suggested that electrochemically active biofilms (EABs) generated by electrically active microorganisms have properties that can be used to catalyze or control the electrochemical reactions in a range of fields, such as bioenergy production, bioremediation, chemical/biological synthesis, bio-corrosion mitigation and biosensor development. EABs have attracted considerable attraction in bioelectrochemical systems (BESs), such as microbial fuel cells and microbial …


Enhanced Optical, Visible Light Catalytic And Electrochemical Properties Of Au@Tio2 Nanocomposites, Mohammad Mansoob Khan Dr, Sajid A. Ansari Mar 2013

Enhanced Optical, Visible Light Catalytic And Electrochemical Properties Of Au@Tio2 Nanocomposites, Mohammad Mansoob Khan Dr, Sajid A. Ansari

Dr. Mohammad Mansoob Khan

Au@TiO2 nanocomposites and pure TiO2 were successfully used to know the effect of Au on TiO2 and their comparative optical, visible light catalytic andelectrochemical activities were investigated. Optical parameters such as band gap energy (Eg = 2.4 eV), absorption coefficient (a), refractive index (n) and dielectric constants (s) have been determined using different methods. Visible light (590 nm) catalytic activity of Au@TiO2 nanocomposites was performed for reducing methyl orange (MO) under visible light irradiation. CV, EIS and DPV studies demonstrate that Au@TiO2 nanocomposites exhibit redox behavior, charged its surface by accumulating electrons, store and release the electrons.


Synthesis Of Gold Nanoparticles Using A Stainless Steel Mesh, Thi Hiep Han, Mohammad Mansoob Khan Dr, S Kalathil, J Lee, M H. Cho Dec 2012

Synthesis Of Gold Nanoparticles Using A Stainless Steel Mesh, Thi Hiep Han, Mohammad Mansoob Khan Dr, S Kalathil, J Lee, M H. Cho

Dr. Mohammad Mansoob Khan

A novel, rapid, one-pot, and facile approach was developed to synthesize positively charged gold nanoparticles [(+) AuNPs] by employing an aqueous solution of HAuCl4·3H2O as a precursor at 30 °C and a stainless-steel mesh as a reducing agent. The penetration of Cl− ions into the stainless-steel surface results in corrosion on the stainless-steel surface and excretion of electrons which are used for reduction of Au3+ → Au0. As a result, (+) AuNPs 5-20 nm in size, mostly monodispersed, were synthesized within 3 h. The as-synthesized AuNPs were charaterized by UV-vis, DLS, XRD, TEM, HR-TEM, EDX and SAED. The utilization of …


Determination Of Airborne Nanoparticles From Welding Operations, João F. Gomes Dec 2011

Determination Of Airborne Nanoparticles From Welding Operations, João F. Gomes

João F Gomes

The aim of this study is to assess the levels of airborne ultrafine particles emitted in welding processes (tungsten inert gas (TIG), metal active gas (MAG) of carbon steel and friction stir welding (FSW) of aluminium) in terms of deposited area in pulmonary alveolar tract using a Nanoparticle Surface Area Monitor (NSAM) analyzer. The obtained results showed the dependence from process parameters on emitted ultrafine particles and demonstrated the presence of ultrafine particles compared to background levels. Data indicated that the process that resulted in the lowest levels of alveolar deposited surface area (ADSA) was FSW, followed by TIG and …


Exposure To Airborne Ultrafine Particles From Cooking In Portuguese Homes, João F. Gomes Dec 2011

Exposure To Airborne Ultrafine Particles From Cooking In Portuguese Homes, João F. Gomes

João F Gomes

No abstract provided.


Assessment Of Exposure To Airborne Ultrafine Particles In The Urban Environment Of Lisbon, Portugal, João F. Gomes Dec 2011

Assessment Of Exposure To Airborne Ultrafine Particles In The Urban Environment Of Lisbon, Portugal, João F. Gomes

João F Gomes

The aim of this study was the assessment of exposure to ultrafine in the urban environment of Lisbon, Portugal, due to automobile traffic, and consisted of the determination of deposited alveolar surface area in an avenue leading to the town center during late spring. This study revealed differentiated patterns for weekdays and weekends, which could be related with the fluxes of automobile traffic. During a typical week, ultrafine particles alveolar deposited surface area varied between 35.0 and 89.2 mm2/cm3, which is comparable with levels reported for other towns such in Germany and the United States. These measurements were also complemented …


Metamaterials On Parylene Thin Film Substrates: Design, Fabrication, And Characterization At Terahertz Frequency, Xianliang Liu, Samuel Macnaughton, David Shrekenhamer, Hu Tao, Selvapraba Selvarasah, Atcha Totachawattana, Richard Averitt, Mehmet Dokmeci, Sameer Sonkusale, Willie Padilla Jun 2011

Metamaterials On Parylene Thin Film Substrates: Design, Fabrication, And Characterization At Terahertz Frequency, Xianliang Liu, Samuel Macnaughton, David Shrekenhamer, Hu Tao, Selvapraba Selvarasah, Atcha Totachawattana, Richard Averitt, Mehmet Dokmeci, Sameer Sonkusale, Willie Padilla

Mehmet R. Dokmeci

We design, fabricate, and characterize terahertz (THz) resonant metamaterials on parylene free-standing thin film substrates. Several different metamaterials are investigated and our results show strong electromagnetic responses at THz frequencies ranging from 500 GHz to 2.5 THz. The complex frequency dependent dielectric properties of parylene are determined from inversion of reflection and transmission data, thus indicating that parylene is an ideal low loss substrate or coating material. The biostable and biocompatible properties of parylene coupled with the multifunctional exotic properties of metamaterials indicate great potential for medical purposes such as THz imaging for skin cancer detection.


Synthesis Of Ordered Arrays Of Multiferroic Nife₂O₄-Pb(Zr₀.₅₂Ti₀.₄₈)O₃ Core-Shell Nanowires, Ming Liu, Xin Li, Hassan Imrane, Yajie Chen, Trevor L. Goodrich, Zhuhua Cai, Katherine S. Ziemer, Jian Y. Huang, Nian X. Sun Jan 2011

Synthesis Of Ordered Arrays Of Multiferroic Nife₂O₄-Pb(Zr₀.₅₂Ti₀.₄₈)O₃ Core-Shell Nanowires, Ming Liu, Xin Li, Hassan Imrane, Yajie Chen, Trevor L. Goodrich, Zhuhua Cai, Katherine S. Ziemer, Jian Y. Huang, Nian X. Sun

Katherine S. Ziemer

A synthesis method was developed for producing core-shell nanowire arrays, which involved a combination of a modified sol-gel process, electrochemical deposition, and subsequent oxidization in anodized nanoporous alumina membranes. This method was applied to generate ordered arrays of one dimensional multiferroic NiFe₂O₄ core and Pb(Zr₀.₅₂Ti₀.₄₈)O₃ (PZT) shell nanostructures. Extensive microstructural, magnetic, and ferroelectric characterizations confirmed that the regular arrays of core-shell multiferroic nanostructures were composed of a spinel NiFe₂O₄ core and perovskite PZT shell. This synthesis method can be readily extended to prepare different core-shell nanowire arrays and is expected to pave the way for one dimensional core-shell nanowire arrays.


2009 Report Of Crerg Research Activities, João F. Gomes Dec 2009

2009 Report Of Crerg Research Activities, João F. Gomes

João F Gomes

No abstract provided.


Toxicological Assessment Of Coated Versus Uncoated Rubber Granulates Obtained From Used Tires For Use In Sport Facilities, João F. Gomes Dec 2009

Toxicological Assessment Of Coated Versus Uncoated Rubber Granulates Obtained From Used Tires For Use In Sport Facilities, João F. Gomes

João F Gomes

Reuse of tire crumb in sport facilities is currently a very cost-effective waste management measure. Considering that incorporation of the waste materials in artificial turf would be facilitated if the rubber materials were already colored green, coatings were specifically developed for this purpose. This paper presents an experimental toxicological and environmental assessment aimed at comparing the obtained emissions to the environment in terms of polycyclic aromatic hydrocarbons (PAHs), heavy metals, and ecotoxicity for coated and noncoated rubber granulates. This study is a comprehensive evaluation of the major potential critical factors related with the release of all of these classes of …


Assessment Of The Impact Of The European Co2 Emissions Trading Scheme On The Portuguese Chemical Industry, João F. Gomes Dec 2008

Assessment Of The Impact Of The European Co2 Emissions Trading Scheme On The Portuguese Chemical Industry, João F. Gomes

João F Gomes

No abstract provided.


Environmentally Benign Synthesis Of Nanosized Aluminophosphate Enhanced By Microwave Heating, Eng-Poh Ng, Luc Delmotte, Svetlana Mintova Dec 2007

Environmentally Benign Synthesis Of Nanosized Aluminophosphate Enhanced By Microwave Heating, Eng-Poh Ng, Luc Delmotte, Svetlana Mintova

Eng-Poh Ng

The problem addressed with our paper is on the efficient utilization of reacting materials for enhanced syntheses of nanosized aluminophosphate molecular sieve by microwave heating, and decreasing or almost eliminating the related waste. The synthesis procedure deals with the environmental issues concerning the future manufacture re-use and disposal of non-reacted chemicals associated with the production of nanosized aluminophosphate. Nanosized AlPO-18 has been prepared by a multicycle synthesis approach via re-using non-reacted compounds from precursor suspensions with minimal requirement of chemical compensation after recovering of crystalline nanoparticles from each step. This approach is implied as environmentally benign and results in almost …


Emissions Of Polyciclic Aromatic Hidrocarbons And Polyciclic Carbonyl Bifenils From Electric Arc Furnaces, João F. Gomes Dec 2007

Emissions Of Polyciclic Aromatic Hidrocarbons And Polyciclic Carbonyl Bifenils From Electric Arc Furnaces, João F. Gomes

João F Gomes

This paper describes work done in order to determine the emissions of highly toxic organic micropollutants from electric arc furnaces used in the production of carbon steel from scrap. The study will be allowing to derive relationships between the levels of airborne micropollutants and the operational parameters of the production process so that an abatement of pollution could be achieved. By using the European standard method CEN 1948 for dioxin like compounds sampling and measurement, it was possible to determine the characteristic fingerprint of micropollutants such as polycyclic aromatic hydrocarbons (PAHs) and PCBs emitted by this particular stationary source.


Analysis Of Welding Fumes: A Short Notice On The Comaprison Between Two Sampling Techniques, João F. Gomes Dec 2004

Analysis Of Welding Fumes: A Short Notice On The Comaprison Between Two Sampling Techniques, João F. Gomes

João F Gomes

No abstract provided.


Biomimetic Actuators: Where Technology And Cell Biology Merge [Review Article], Michael Knoblauch, Winfried Peters Nov 2004

Biomimetic Actuators: Where Technology And Cell Biology Merge [Review Article], Michael Knoblauch, Winfried Peters

Winfried S. Peters

The structural and functional analysis of biological macromolecules has reached a level of resolution that allows mechanistic interpretations of molecular action, giving rise to the view of enzymes as molecular machines. This machine analogy is not merely metaphorical, as bio-analogous molecular machines actually are being used as motors in the fields of nanotechnology and robotics. As the borderline between molecular cell biology and technology blurs, developments in the engineering and material sciences become increasingly instructive sources of models and concepts for biologists. In this review, we provide a – necessarily selective – summary of recent progress in the usage of …


Nanometer-Scale Probing Of Potential-Dependent Electrostatic Forces, Adhesion, And Interfacial Friction At The Electrode/Electrolyte Interface, Shane D. Campbell, Andrew C. Hillier Dec 1998

Nanometer-Scale Probing Of Potential-Dependent Electrostatic Forces, Adhesion, And Interfacial Friction At The Electrode/Electrolyte Interface, Shane D. Campbell, Andrew C. Hillier

Andrew C. Hillier

The atomic force microscope (AFM) was used to examine the influence of an applied electrochemical potential on the interfacial properties of the electrode/electrolyte interface. Measurements of electrostatic force, adhesion, and friction coefficient were performed at two different electrode surfaces: glassy carbon anda thin film of sulfonate-derivatized poly(aniline) (SPANi). At the carbon electrode, changes in electrostatic force between probe and substrate exhibited a potential-dependent transition from repulsive to attractive values at potentials negative and positive of the potential of zero charge (Epzc). Simultaneous measurements of tip-substrate adhesion and friction coefficient showed a change from low to high values over the same …


Assessment Of Opacimeter Calibration On Kraft Pulp Mills, João F. Gomes Dec 1997

Assessment Of Opacimeter Calibration On Kraft Pulp Mills, João F. Gomes

João F Gomes

This paper describes the methodology and specific techniques for calibrating automatic on-line industrial emission analysers, specifically equipments that measure total suspended dust installed in pulp mills within the scope of Portuguese Regulation Nº 286/93 on air quality. The calibration of opacimeters is a multi-parameter relationship instead of the bi-dimensional calibration which is used in industrial practice. For a stationary source from a pulp mill such as the recovery boiler stack, which is subjected to significant variations, the effects of parameters such as the humidity and gas temperature, deviations on isokinetism, size range of particles and characteristic transmitance of equipment are …