Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Catalysis and Reaction Engineering

PDF

Lithium ion battery

Publication Year

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Surface Modifications Of Lini0.96Co0.02Mn0.02O2 With Tungsten Oxide And Phosphotungstic Acid, Gang Zhao, Zheng-Liang Gong, Yi-Xiao Li, Yong Yang Oct 2023

Surface Modifications Of Lini0.96Co0.02Mn0.02O2 With Tungsten Oxide And Phosphotungstic Acid, Gang Zhao, Zheng-Liang Gong, Yi-Xiao Li, Yong Yang

Journal of Electrochemistry

With the rapid development of electric vehicles, enormous demands are made for higher energy density, better cycling performance and lower cost of lithium-ion batteries (LIBs). As an important high capacity cathode material for LIBs, the high nickel layered oxide material LiNi0.8Co0.1Mn0.1O2(NCM811) can reach an energy density of 760 Wh·kg-1. The ultra-high nickel ternary positive electrode material (LiNi1-x-yCoxMnyO2, x ≥ 0.90) has a specific capacity of more than 210 mAh·g-1, and can realize higher energy density. Besides, an ultra-high nickel material …


Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li Dec 2013

Controllable Synthesis Of Dispersed Spherical Fe3O4 Nanoparticles As Lithium-Inserted Materials, Hong-Li Zou, Wei-Shan Li

Journal of Electrochemistry

Dispersed spherical Fe3O4 nanoparticles were synthesized by a hydrothermal method. The influences of odecyl trimethyl ammonium bromide (DTAB) concentration on the morphology and particle size of the as-prepared Fe3O4 were studied. Electrochemical performance of the as-prepared sample as anode materials of lithium ion battery was investigated. It is found that the as-prepared sample exhibits superior rate performance and cycle performance. The nano-sized materials provide structural stability and favor the transfer of lithium ions.


The Hydrothermal Synthesis Of Nanoscale Lifepo_4 And Its Electrochemical Performance, Si-Min Wang, Ming-Sen Zheng, Quan-Feng Dong Nov 2008

The Hydrothermal Synthesis Of Nanoscale Lifepo_4 And Its Electrochemical Performance, Si-Min Wang, Ming-Sen Zheng, Quan-Feng Dong

Journal of Electrochemistry

The cathode materials of nanosiged LiFePO4 were prepared by hydrothermal templating synthesis.The grain sizes and electrochemical performance of LiFePO4 were controlled by surfactant.It was shown that the grain sizes varied from less than a hundred to hundreds nanometers by the SEM images.In the charge/discharge tests,the discharge capacities of the sample as a lithium ion battery were achieved to 150 mAh/g at 0.1C,140 mAh/g at 1C,and 126 mAh/g at 2C,with good cycling performance.


Surface Modifications Of Carbon Materials Used As Anode Of Lithium Ion Battery Ⅰ.Influences Of Oxidation And Reduction Pretreatment On Anode Performance, Shuhua Ma, Hanju Guo, Ji Li, Hongze Liang, Xiabin Jing, Fosong Wang Nov 1996

Surface Modifications Of Carbon Materials Used As Anode Of Lithium Ion Battery Ⅰ.Influences Of Oxidation And Reduction Pretreatment On Anode Performance, Shuhua Ma, Hanju Guo, Ji Li, Hongze Liang, Xiabin Jing, Fosong Wang

Journal of Electrochemistry

The influences of the trace oxygen containing functional groups on surface of carbon material on cell performance of carbon anode for lithium ion batteries were studied by means of the pretreament in various oxidant/reductant systems.The results showed that the rich oxygen containing functional groups impaired the cell performance of carbon material anode,and the reduction of these groups in quantity and oxidation degree can increase charge/discharge capacity and improve first charge/discharge efficiency.The reason was also discussed in the light of effects of surface organic groups on decomposition reactivity of electrolyte and formation process of surface passivating film.