Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 7 of 7

Full-Text Articles in Nanoscience and Nanotechnology

Synthesis Of Porous Carbon Nanosheets And Its Application In Sodium-Ion Battery, Jing-Fei Zhang, Jing Lu, Xiao-Yu Yang, Yun-Di Huang, Lin Xu, Dong-Mei Sun, Ya-Wen Tang Dec 2015

Synthesis Of Porous Carbon Nanosheets And Its Application In Sodium-Ion Battery, Jing-Fei Zhang, Jing Lu, Xiao-Yu Yang, Yun-Di Huang, Lin Xu, Dong-Mei Sun, Ya-Wen Tang

Journal of Electrochemistry

Owning to sodium’s high abundance, relatively low cost, similar chemical properties to Li and very suitable redox potential of E0(Na+/Na) = -2.71 V versus SHE which is only 0.3 V above that of lithium, rechargeable sodium ion battery hold much promise as potential alternatives to current lithium ion batteries for energy storage applications. Carbon material is regarded as the most promising anode candidate for sodium ion battery. Particularly, carbon nanosheet with porous structure and high conductivity is expected to have improved sodium ion storage properties. In this paper, we present a two-step pyrolysis-based method for facile synthesis of porous carbon …


Effect Of Carbon Nanotubes On Anodic Properties Of Ti/Ru-Ir-Sn Oxides, Feng Lian, Yong-Lei Xin, Bo-Jiang Ma, Li-Kun Xu Aug 2015

Effect Of Carbon Nanotubes On Anodic Properties Of Ti/Ru-Ir-Sn Oxides, Feng Lian, Yong-Lei Xin, Bo-Jiang Ma, Li-Kun Xu

Journal of Electrochemistry

The Ru-Ir-Sn metal oxide anodes coated on titanium (Ti/Ru-Ir-Sn) were prepared by thermal decomposition. The effects of amounts of carbon naotubes (CNTs) on anodic properties were studied by TGA, SEM, EDS, cyclic voltammetry, EIS, polarization measurements and accelerated life test. The thermogravimetric analysis and EDS spectrum data showed that the high temperature oxidation decomposition of CNTs did not take place under the condition of the sintering temperature of 470 ℃, and the CNTS still existed in the anode coating in an element form. Compared with the contrast samples, the surface crack of the coating increased, but remained typical morphology. Adding …


Effect Of Adsorption Potential On Co Oxidation At Au@Pt Nanoparticles Electrodes, A Surface Enhanced Raman Spectroscopic Study, Pu Zhang, Yi Wei, Yong-Li Zheng, Yan-Xia Chen, Zhong-Qun Tian Aug 2015

Effect Of Adsorption Potential On Co Oxidation At Au@Pt Nanoparticles Electrodes, A Surface Enhanced Raman Spectroscopic Study, Pu Zhang, Yi Wei, Yong-Li Zheng, Yan-Xia Chen, Zhong-Qun Tian

Journal of Electrochemistry

The adsorption/oxidation of CO on the 55 nm Au@0.7 nm Pt nanoparticles electrode in both potentiodynamic and potentiostatic modes were investigated by surface enhanced Raman spectroscopy in a thin layer electrochemical flow cell under controlled mass transport, with the aim of clarifying the origin CO oxidation at lower electrode potentials (in current pre-wave region of corresponding cyclic voltammograms). Our results demonstrated that the CO oxidation kinetics differed significantly from the three kinds of different CO adsorption history, with almost no CO oxidation current in the pre-peak potential region after 0.35 VRHE CO adsorption with or without subsequent holding the …


Preparation And Characterization Of Carbon Supported Pd-Sb Composite Nanocatalysts For Formic Acid Electrooxidation, Long-Long Wang, Xiao-Lu Cao, Ya-Jun Wang, Jin-Hao Ping, Qiao-Xia Li Aug 2015

Preparation And Characterization Of Carbon Supported Pd-Sb Composite Nanocatalysts For Formic Acid Electrooxidation, Long-Long Wang, Xiao-Lu Cao, Ya-Jun Wang, Jin-Hao Ping, Qiao-Xia Li

Journal of Electrochemistry

Palladium is considered as an efficient anode catalyst with high catalytic activity for electrooxidation of formic acid. To further improve the catalytic activity and stability, alloying or surface modification with Sb is an effective way. In this work, the well dispersed carbon supported Pd-Sb composite nanocatalysts (Pd-Sb/C) were synthesized by traditional impregnation reduction method with trisodium citrate as the complexing agent, sodium borohydride as the reducing agent. The morphologies of Pd-Sb/C and the effects of molar ratio of Pd to Sb on the electrocatalytic properties of Pd-Sb/C for HCOOH electrooxidation were studied. The XRD and XPS analyses on the as-prepared …


Nanonickel Catalyst Reinforced With Silicate For Methane Decomposition To Produce Hydrogen And Nanocarbon: Synthesis By Co-Precipitation Cum Modified Stöber Method, Upm Ashik, Wma Wan Daud May 2015

Nanonickel Catalyst Reinforced With Silicate For Methane Decomposition To Produce Hydrogen And Nanocarbon: Synthesis By Co-Precipitation Cum Modified Stöber Method, Upm Ashik, Wma Wan Daud

upm ashik

Co-precipitation cum modified Stöber method is a continuous process avoiding application of higher temperature treatment before supporting nanometal with SiO2, irrespective of pre-preparation methods. We have conducted the co-precipitation process without undertaking calcination under air in order to avoid even a partial particle agglomeration and hence maintained average particle size [similar]30 nm after enforcing with SiO2. This is the first report adopting such an unceasing preparation for preparing metal/silicate nanostructures. Furthermore, n-Ni/SiO2 nanostructured catalysts were used for thermocatalytic decomposition of methane to produce hydrogen and carbon nanotubes. The catalyst was found to be very stable and the methane transformation activity …


Porous Co3O4 Hollow Nanospheres Cathode Catalyst For High-Capacity And Long-Cycle Li-Air Batteries, Tong Liu, Na Li, Qing-Chao Liu, Xin-Bo Zhang Apr 2015

Porous Co3O4 Hollow Nanospheres Cathode Catalyst For High-Capacity And Long-Cycle Li-Air Batteries, Tong Liu, Na Li, Qing-Chao Liu, Xin-Bo Zhang

Journal of Electrochemistry

In this paper, a high specific surface area of porous Co3O4 hollow nanospheres was successfully synthesized via hydrothermal carbonization at 140 oC, followed by calcination using cobalt nitrate hexahydrate (Co(NO3)2·6H2O), hexamethylenetetramine (HMT), sucrose, and sodium citrate (Na3C6H5O7). The porous Co3O4 hollow nanospheres consisted of nanoparticles with high specific surface area of mesoporous structure, and could provide active reaction sites for OER and ORR. When used as lithium-air battery cathode catalyst, the Co3O4/Super P (SP) electrode …


Designed Synthesis Of Nanoporous Organic Polymers For Selective Gas Uptake And Catalytic Applications, Pezhman Arab Jan 2015

Designed Synthesis Of Nanoporous Organic Polymers For Selective Gas Uptake And Catalytic Applications, Pezhman Arab

Theses and Dissertations

Design and synthesis of porous organic polymers have attracted considerable attentions during the past decade due to their wide range of applications in gas storage, gas separation, energy conversion, and catalysis. Porous organic polymers can be pre-synthetically and post-synthetically functionalized with a wide variety of functionalities for desirable applications. Along these pursuits, we introduced new synthetic strategies for preparation of porous organic polymers for selective CO2 capture.

Porous azo-linked polymers (ALPs) were synthesized by an oxidative reaction of amine-based monomers using copper(I) as a catalyst which leads to azo-linkage formation. ALPs exhibit high surface areas of up to 1200 …