Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Nanoscience and Nanotechnology

Synthesis And Catalytic Property Of Flaked Spindle-Like Cuo Nanocrystals, Jian-Feng Fan, Li-Qing Li, Yu-Feng Huang, Lou-Zhen Fan May 2011

Synthesis And Catalytic Property Of Flaked Spindle-Like Cuo Nanocrystals, Jian-Feng Fan, Li-Qing Li, Yu-Feng Huang, Lou-Zhen Fan

Journal of Electrochemistry

A simple and efficient electrochemical route was developed for the synthesis of flaked spindle-like CuO nanocrystals using aqueous electrolyte and Cu sacrificial anode (graphite as the cathode) in an undivided cell at a constant potential mode under room temperature. The morphologies, structure and component of CuO nanocrystals obtained were characterized by SEM, XRD, respectively. Flaked spindle-like CuO nanocrystals were successfully used to modify a GC electrode to detect H2O2 with cyclic voltammetry (CV) and amperometric (AC).The results showed that products were pure monoclinic CuO nanocrystals. The linear range for the determination of hydrogen peroxide is from 1.0 μmol?L-1 to 1.0 …


Dft Study Of Co2 Reduction To Hydrocarbons On Cu Surfaces, Li-Hui Ou, Sheng-Li Chen May 2011

Dft Study Of Co2 Reduction To Hydrocarbons On Cu Surfaces, Li-Hui Ou, Sheng-Li Chen

Journal of Electrochemistry

CO2 reduction on Cu(111) single crystal surfaces was studied using DFT calculations on the reaction energies and the minimum energy paths. The results indicated that the possible reaction paths for CO2 reduction on Cu(111) surface are CO2(g) + H* → COOH* → (CO +OH)*, (CO + H)* → CHO*, CHO + H → CH2O* → (CH2 + O)*, CH2* + 2H* → CH4 or 2CH2* → C2H4. On Cu(111) surface, the reaction rate is controlled by steps of CH2O* → (CH2 + O)*, CO2(g) + H* → COOH → (CO +OH)* and (CO + H)* → CHO*. In addition, the …


A Titanium-Supported Nanoporous Pd Electrocatalyst For Methanol Oxidation, Feng-Juan Niu, Qing-Feng Yi Feb 2011

A Titanium-Supported Nanoporous Pd Electrocatalyst For Methanol Oxidation, Feng-Juan Niu, Qing-Feng Yi

Journal of Electrochemistry

Titanium-supported nanoporous palladium electrode(nanoPd /Ti) was prepared by a hydrothermal process in the presence of the ligand EDTA and using formaldehyde as reducing agent.SEM images showed that the size of Pd particles was about 60 nm and the Pd particles were connected with each other to form a three-dimensional network structure.Cyclic voltammetry(CV) and electrochemical impedance spectroscopy(EIS) were applied to evaluate the electrocatalytic activity of the nanoPd/Ti electrode towards methanol oxidation in alkaline solution.CV results showed that the nanoPd /Ti electrode presented high anodic peak densities and a low onset potential for methanol oxidation.Also nanoPd /Ti electrode showed excellent CO tolerance …


Electrocatalytic Oxidation Of Hydrazine At Rutin Carbon Nanotubes Modified Electrode, Hong-Fang Zhang, Qing-Lin Sheng, Jian-Bin Zheng Feb 2011

Electrocatalytic Oxidation Of Hydrazine At Rutin Carbon Nanotubes Modified Electrode, Hong-Fang Zhang, Qing-Lin Sheng, Jian-Bin Zheng

Journal of Electrochemistry

The electrochemical behavior and electrocatalytic oxidation of hydrazine on rutin multiwall carbon nanotubes modified glassy carbon electrode were studied by cyclic voltammetry.The experimental results indicated that the electrode exhibits good electrocatalytic activity to hydrazine at a reduced oxidation potential of 262 mV.The amperometric response of the modified electrode showed linear increase after successive addition of hydrazine in the concentration range of 2.5×10-6~1.0×10-4 mol·L-1 with a detection limit of 5×10-7 mol·L-1.