Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss Sep 2019

Minimalistic Peptide-Based Supramolecular Systems Relevant To The Chemical Origin Of Life, Daniela Kroiss

Dissertations, Theses, and Capstone Projects

All forms of life are based on biopolymers, which are made up of a selection of simple building blocks, such as amino acids, nucleotides, fatty acids and sugars. Their individual properties govern their interactions, giving rise to complex supramolecular structures with highly specialized functionality, including ligand recognition, catalysis and compartmentalization. In this thesis, we aim to answer the question whether short peptides could have acted as precursors of modern proteins during prebiotic evolution. Using a combination of experimental and computational techniques, we screened a large molecular search space for peptide sequences that are capable of forming supramolecular complexes with adenosine …


Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo Apr 2019

Incorporation Of Egfr And Ron Receptors Into Nanodiscs, Cristina Flores-Cadengo

Biomedical Engineering ETDs

Understanding the structure-function relationship of membrane receptors is essential to comprehend the crosstalk between key signaling pathways. Aberrant trans-activation between receptors can lead to tumorigenesis. Two of these receptors known to be involved in cancer development are receptor tyrosine kinases (RTKs), RON (Recepteur d'Origine Nantais) and EGFR (Epidermal Growth Factor Receptor). There has been evidence of heterodimerization and crosstalk between these two receptors based on co-immunoprecipitation, however the structural requirements behind these interactions remain unknown. Structural studies could provide insights into these RTKs’ modes of dimerization and structure-function relationship. However, structural studies of full-length membrane proteins are often difficult due …


Potential Of Nanoscale Elements To Control Fusarium Wilt Disease In Tomato (Solanum Lycopersicum), Enhance Macronutrient Use Efficiency, And Increase Its Yield, Ishaq Olarewaju Adisa Jan 2019

Potential Of Nanoscale Elements To Control Fusarium Wilt Disease In Tomato (Solanum Lycopersicum), Enhance Macronutrient Use Efficiency, And Increase Its Yield, Ishaq Olarewaju Adisa

Open Access Theses & Dissertations

Nanotechnology has a great potential in ensuring food production, security and safety globally. Over the past decade, research on the use of nanomaterials to supply nutrient elements and protect plants from pest and diseases has significantly increased. Tomato (Solanum lycopersicum) is one of the most consumed vegetables in the world and United State is one of its largest producers globally generating billions of dollars annually in revenue.. Tomato plants are affected worldwide by Fusarium wilt caused by Fusarium oxysporum f. sp. Lycopersici. There is growing concern about excessive use of conventional pesticides in controlling Fusarium and other diseases in tomato …