Open Access. Powered by Scholars. Published by Universities.®

Nanoscience and Nanotechnology Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Nanoscience and Nanotechnology

Characterization Of Simulated Low Earth Orbit Space Environment Effects On Acid-Spun Carbon Nanotube Yarns, Ryan A. Kemnitz, Gregory R. Cobb, Abhendra K. Singh, Carl R. Hartsfield Dec 2019

Characterization Of Simulated Low Earth Orbit Space Environment Effects On Acid-Spun Carbon Nanotube Yarns, Ryan A. Kemnitz, Gregory R. Cobb, Abhendra K. Singh, Carl R. Hartsfield

Faculty Publications

The purpose of this study is to quantify the detrimental effects of atomic oxygen and ultraviolet (UV) C radiation on the mechanical properties, electrical conductivity, and piezoresistive effect of acid-spun carbon nanotube (CNT) yarns. Monotonic tensile tests with in-situ electrical resistance measurements were performed on pristine and exposed yarns to determine the effects of the atomic oxygen and UVC exposures on the yarn’s material properties. Both type of exposures were performed under vacuum to simulate space environment conditions. The CNT yarns’ mechanical properties did not change significantly after being exposed to UV radiation, but were significantly degraded by the atomic …


Quantifying The Effects Of Hyperthermal Atomic Oxygen And Thermal Fatigue Environments On Carbon Nanotube Sheets For Space-Based Applications, Jacob W. Singleton, Gregory R. Cobb, Heath E. Misak, Ryan A. Kemnitz Oct 2019

Quantifying The Effects Of Hyperthermal Atomic Oxygen And Thermal Fatigue Environments On Carbon Nanotube Sheets For Space-Based Applications, Jacob W. Singleton, Gregory R. Cobb, Heath E. Misak, Ryan A. Kemnitz

Faculty Publications

The effects of atomic oxygen and thermal fatigue on two different types of carbon nanotube sheets were studied. One set was treated with nitric acid, while the other set was left untreated. Monotonic tensile tests were performed before and after exposure to determine the effects of either exposure type on the sheets’ mechanical properties. Electrical conductivity and electromagnetic interference measurements were recorded to determine the effects of AO-exposure and thermal cycling on the sheets’ electrical properties. Neither exposure type affected the sheets’ specific strengths. Both exposure types increased the sheets’ specific stiffnesses and decreased the sheets’ strains at failure. The …


Thermal Transport Properties Of Dry Spun Carbon Nanotube Sheets, Heath E. Misak, James L. Rutledge, Eric D. Swenson, Shankar Mall Feb 2016

Thermal Transport Properties Of Dry Spun Carbon Nanotube Sheets, Heath E. Misak, James L. Rutledge, Eric D. Swenson, Shankar Mall

Faculty Publications

The thermal properties of carbon nanotube- (CNT-) sheet were explored and compared to copper in this study. The CNT-sheet was made from dry spinning CNTs into a nonwoven sheet. This nonwoven CNT-sheet has anisotropic properties in in-plane and out-of-plane directions. The in-plane direction has much higher thermal conductivity than the out-of-plane direction. The in-plane thermal conductivity was found by thermal flash analysis, and the out-of-plane thermal conductivity was found by a hot disk method. The thermal irradiative properties were examined and compared to thermal transport theory. The CNT-sheet was heated in the vacuum and the temperature was measured with an …