Open Access. Powered by Scholars. Published by Universities.®

Explosives Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Explosives Engineering

Thin Safety Margin: The Sefor Super-Prompt-Critical Transient Experiments, Ozark Mountains, Arkansas 1970–1971, Jerry Havens, Collis Geren Oct 2021

Thin Safety Margin: The Sefor Super-Prompt-Critical Transient Experiments, Ozark Mountains, Arkansas 1970–1971, Jerry Havens, Collis Geren

Arkansas Scholarly Editions

Thin Safety Margin charts the history of SEFOR, a twenty-megawatt reactor that operated for three years in the rural Ozark Mountains of Arkansas as part of an internationally sponsored program designed to demonstrate the Doppler effect in plutonium-oxide-fueled fast reactors. Authors Jerry Havens and Collis Geren draw upon this history to assess the accidental explosion risk inherent in using fast reactors to reduce the energy industry’s carbon dioxide emissions.

If a sufficiently powerful fast-neutron explosion were to cause the containment of a reactor such as SEFOR’s to fail, the reactor’s radiotoxic plutonium fuel could vaporize and escape into the surrounding …


Relating Detonation Parameters To The Detonation Synthesis Of Nanomaterials, Martin Langenderfer Jan 2021

Relating Detonation Parameters To The Detonation Synthesis Of Nanomaterials, Martin Langenderfer

Doctoral Dissertations

“This research investigates the physical and chemical processes that contribute to the detonation synthesis of silicon carbide nanoparticles. Bulk production of SiC nanoparticles through detonation is possible due to pressures achieved over 20 GPa and temperatures over 2000 K as well as quenching rates in excess of 13 billion K/second. These conditions catalyze reaction and bottom-up molecular growth while retaining particles < 100 nm in diameter. In this work, detonation synthesis of SiC was demonstrated by incorporation of polycarbosilane, an SiC precursor material, into an RDX/TNT explosive matrix prior to detonation. Detonation Synthesis of SiC was also accomplished by reacting elemental silicon with carbon liberated by the detonation of negatively oxygen balanced TNT. Hydrodynamic simulation of a 60:40 mass ratio RDX/TNT detonation created conditions thermodynamically suitable to produce cubic silicon carbide within the first 500 nanoseconds after the passage of the detonation wave while carbon remains chemically reactive for molecular formation. Simulations and experimental tests indicated that loading configuration and impedance mismatch of the precursor additives used in detonation synthesis results in conditions in the additives that exceed the accepted detonation pressure of the explosive by greater than three times. Finally, a full factorial experimental design showed increasing silicon concentration, reducing silicon size, and reducing oxygen balance by adjusting the ratio of RDX to TNT decreased the explosives detonation pressure by 20% and increased the soot yield and concentration of SiC observed in the detonation products by 82% and 442% respectively”--Abstract, page iv.


Detonation Synthesis Of Alpha-Variant Silicon Carbide, Martin Langenderfer, Catherine E. Johnson, William Fahrenholtz, Vadym Mochalin Jul 2018

Detonation Synthesis Of Alpha-Variant Silicon Carbide, Martin Langenderfer, Catherine E. Johnson, William Fahrenholtz, Vadym Mochalin

Mining Engineering Faculty Research & Creative Works

A recent research study has been undertaken to develop facilities for conducting detonation synthesis of nanomaterials. This process involves a familiar technique that has been utilized for the industrial synthesis of nanodiamonds. Developments through this study have allowed for experimentation with the concept of modifying explosive compositions to induce synthesis of new nanomaterials. Initial experimentation has been conducted with the end goal being synthesis of alpha variant silicon carbide (α-SiC) in the nano-scale. The α-SiC that can be produced through detonation synthesis methods is critical to the ceramics industry because of a number of unique properties of the material. Conventional …