Open Access. Powered by Scholars. Published by Universities.®

Mining Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Mining Engineering

The Causes Of Armature Surface Fracturing Within Helical Flux-Compression Generators, Jason Baird, Paul Nicholas Worsey Aug 2016

The Causes Of Armature Surface Fracturing Within Helical Flux-Compression Generators, Jason Baird, Paul Nicholas Worsey

Paul Nicholas Worsey

Aluminum and copper tubes filled with explosive were tested during this study of high strain rate effects, as an adjunct to helical flux-compression generator research at the University of Missouri-Rolla, directly affecting the understanding of flux cutoff and high strain-rate changes in generator armatures. Longitudinal cracks characteristically developed in the outer surface of armatures at a smaller expansion ratio than predicted. These cracks occurred within two diameters of the detonator end of the armature but did not extend when the tubing expanded under explosive pressurization. Such cracks appear to cause magnetic flux cutoff, and flux losses seriously affect energy conversion ...


Surface Fracturing Of Armatures Within Helical Flux-Compression Generators, Paul Nicholas Worsey, Jason Baird Aug 2016

Surface Fracturing Of Armatures Within Helical Flux-Compression Generators, Paul Nicholas Worsey, Jason Baird

Paul Nicholas Worsey

Tubes of aluminum and of copper filled with C-4 high-explosive were tested during this study of high strain rate effects within thin metallic structures performed as an adjunct to helical flux-compression generator research at the University of Missouri-Rolla. Focusing on the stresses within a relatively thin metallic structure when brisant explosives abutting the structure are detonated, this study directly affects the understanding of flux cutoff and high strain-rate resistivity changes in an expanding armature. The detonation wave is compressive, and the shock waves resulting from its transmission into a thin metallic structure cause both compressive and tensile regions, posing an ...


Optical Diagnostics On Helical Flux Compression Generators, A. A. Neuber, J. C. Dickens, H. Krompholz, M. F. C. Schmidt, Jason Baird, Paul Nicholas Worsey, M. Kristiansen Aug 2016

Optical Diagnostics On Helical Flux Compression Generators, A. A. Neuber, J. C. Dickens, H. Krompholz, M. F. C. Schmidt, Jason Baird, Paul Nicholas Worsey, M. Kristiansen

Paul Nicholas Worsey

Explosively driven magnetic flux compression (MFC) has been object of research for more than three decades. Actual interest in the basic physical picture of flux compression has been heightened by a newly started Department of Defense (DoD) Multi-University Research Initiative. The emphasis is on helical flux compression generators comprising a hollow cylindrical metal liner filled with high explosives and at least one helical coil surrounding the liner. After the application of a seed current, magnetic flux is trapped and high current is generated by moving, i.e., expanding, the liner explosively along the winding of the helical coil. Several key ...


Effects Of Defects On Armatures Within Helical Flux-Compression Generators, Jason Baird, Paul Nicholas Worsey, Mark F. C. Schmidt Aug 2016

Effects Of Defects On Armatures Within Helical Flux-Compression Generators, Jason Baird, Paul Nicholas Worsey, Mark F. C. Schmidt

Paul Nicholas Worsey

Tubes of aluminum and copper filled with C-4 high-explosive were tested during this study of the effects of explosive flaws and voids, their sizes and locations, and of the effects of armature machining tolerances on the expansion characteristics of armatures within helical flux-compression generators. Flaws and voids were introduced into the explosive fill of 6061-T6 aluminum armatures during assembly. The defects were located along the major axis of the fill, midway between the major axis and the explosive/armature interface, and at the interface. The resulting effects on armature expansion were recorded by high-speed framing camera, intensified charge-coupled display (ICCD ...


Electric Discharge Caused By Expanding Armatures In Flux Compression Generators, Sergey I. Shkuratov, Jason Baird, Evgueni F. Talantsev, Larry L. Altgilbers Apr 2009

Electric Discharge Caused By Expanding Armatures In Flux Compression Generators, Sergey I. Shkuratov, Jason Baird, Evgueni F. Talantsev, Larry L. Altgilbers

Mining and Nuclear Engineering Faculty Research & Creative Works

In this letter, we experimentally demonstrate that explosively driven expansion of metallic armature of the magnetic flux compression generator (FCG) plays a dominant role in the formation of plasma and electric discharge initiation inside the FCG.


High Voltage Charging Of A Capacitor Bank, Sergey I. Shkuratov, Jason Baird, Evgueni F. Talantsev, A. V. Ponomarev, Larry L. Altgilbers Feb 2008

High Voltage Charging Of A Capacitor Bank, Sergey I. Shkuratov, Jason Baird, Evgueni F. Talantsev, A. V. Ponomarev, Larry L. Altgilbers

Mining and Nuclear Engineering Faculty Research & Creative Works

We have demonstrated the feasibility of charging a capacitor bank to a high voltage using an autonomous ultra-compact explosively driven source of prime power. The prime power source is a longitudinally driven shock wave depolarization of a ferroelectric ceramic. The energy-carrying elements of the shock wave ferroelectric generators (FEGs) were poled Pb(Zr52Ti48)O3 polycrystalline ceramic disks with 0.35 cm3 volume. FEGs charged 9 nF, 18 nF, and 36 nF capacitor banks and provided pulsed-power with peak amplitudes up to 0.29 MW. The maximum efficiency of electric charge transfer from shocked Pb(Zr52Ti48)O3 elements to a capacitor ...


Completely Explosive Ultracompact High-Voltage Nanosecond Pulse-Generating System, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Millard F. Rose, Zachary Shotts, Larry L. Altgilbers, Allen H. Stults Jan 2006

Completely Explosive Ultracompact High-Voltage Nanosecond Pulse-Generating System, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Millard F. Rose, Zachary Shotts, Larry L. Altgilbers, Allen H. Stults

Mining and Nuclear Engineering Faculty Research & Creative Works

A conventional pulsed power technology has been combined with an explosive pulsed power technology to produce an autonomous high-voltage power supply. The power supply contained an explosive-driven high-voltage primary power source and a power-conditioning stage. The ultracompact explosive-driven primary power source was based on the physical effect of shock-wave depolarization of high-energy Pb(Zr52Ti48)O3 ferroelectric material. The volume of the energy-carrying ferroelectric elements in the shock-wave ferroelectric generators (SWFEGs) varied from 1.2 to 2.6 cm3. The power-conditioning stage was based on the spiral vector inversion generator (VIG). The SWFEG-VIG system demonstrated successful operation and good performance. The ...


Compact Autonomous Completely Explosive Pulsed Power System Based On Transverse Shock Wave Demagnetization Of Nd₂Fe₁₄B And Magnetic Flux Compression, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Allen H. Stults, Larry L. Altgilbers Nov 2005

Compact Autonomous Completely Explosive Pulsed Power System Based On Transverse Shock Wave Demagnetization Of Nd₂Fe₁₄B And Magnetic Flux Compression, Sergey I. Shkuratov, Evgueni F. Talantsev, Jason Baird, Allen H. Stults, Larry L. Altgilbers

Mining and Nuclear Engineering Faculty Research & Creative Works

The design and performance of a compact autonomous completely explosive pulsed power system based on two physical effects, the transverse shock wave demagnetization of Nd2Fe14B high-energy hard ferromagnets and magnetic flux compression, are presented. A transverse shock wave ferromagnetic generator (FMG) served as a seed source, and a compact helical magnetic flux compression generator (FCG) was used as a pulsed power amplifier. Results of a theoretical and experimental study demonstrated reliable operation of the proposed FMG-FCG system. The methodology for analytical calculation of seed current amplitude is developed.


Compact High-Voltage Generator Of Primary Power Based On Shock Wave Depolarization Of Lead Zirconate Titanate Piezoelectric Ceramics, Sergey I. Shkuratov, Evgueni F. Talantsev, Latika Menon, Henryk Temkin, Jason Baird, Larry L. Altgilbers Jan 2004

Compact High-Voltage Generator Of Primary Power Based On Shock Wave Depolarization Of Lead Zirconate Titanate Piezoelectric Ceramics, Sergey I. Shkuratov, Evgueni F. Talantsev, Latika Menon, Henryk Temkin, Jason Baird, Larry L. Altgilbers

Mining and Nuclear Engineering Faculty Research & Creative Works

The design and performance of a compact explosive-driven high-voltage primary power generator is presented. The generator utilizes a fundamental physical effect—depolarization of ferroelectric materials under longitudinal shock wave impact, when the shock wave is initiated along the polarization vector P. These primary power sources, containing energy-carrying elements made of lead zirconate titanate poled piezoelectric ceramics, with the volume from 0.35 to 3.3 cm3, are capable of producing pulses of high voltage with amplitudes up to 21.4 kV. The amplitude and full width at half-maximum of the high-voltage pulses are directly proportional to the thickness of the ...


The Causes Of Armature Surface Fracturing Within Helical Flux-Compression Generators, Jason Baird, Paul Nicholas Worsey Jan 2002

The Causes Of Armature Surface Fracturing Within Helical Flux-Compression Generators, Jason Baird, Paul Nicholas Worsey

Mining and Nuclear Engineering Faculty Research & Creative Works

Aluminum and copper tubes filled with explosive were tested during this study of high strain rate effects, as an adjunct to helical flux-compression generator research at the University of Missouri-Rolla, directly affecting the understanding of flux cutoff and high strain-rate changes in generator armatures. Longitudinal cracks characteristically developed in the outer surface of armatures at a smaller expansion ratio than predicted. These cracks occurred within two diameters of the detonator end of the armature but did not extend when the tubing expanded under explosive pressurization. Such cracks appear to cause magnetic flux cutoff, and flux losses seriously affect energy conversion ...


Effects Of Defects On Armatures Within Helical Flux-Compression Generators, Jason Baird, Paul Nicholas Worsey, Mark F. C. Schmidt Jan 2001

Effects Of Defects On Armatures Within Helical Flux-Compression Generators, Jason Baird, Paul Nicholas Worsey, Mark F. C. Schmidt

Mining and Nuclear Engineering Faculty Research & Creative Works

Tubes of aluminum and copper filled with C-4 high-explosive were tested during this study of the effects of explosive flaws and voids, their sizes and locations, and of the effects of armature machining tolerances on the expansion characteristics of armatures within helical flux-compression generators. Flaws and voids were introduced into the explosive fill of 6061-T6 aluminum armatures during assembly. The defects were located along the major axis of the fill, midway between the major axis and the explosive/armature interface, and at the interface. The resulting effects on armature expansion were recorded by high-speed framing camera, intensified charge-coupled display (ICCD ...


Surface Fracturing Of Armatures Within Helical Flux-Compression Generators, Paul Nicholas Worsey, Jason Baird Jan 2001

Surface Fracturing Of Armatures Within Helical Flux-Compression Generators, Paul Nicholas Worsey, Jason Baird

Mining and Nuclear Engineering Faculty Research & Creative Works

Tubes of aluminum and of copper filled with C-4 high-explosive were tested during this study of high strain rate effects within thin metallic structures performed as an adjunct to helical flux-compression generator research at the University of Missouri-Rolla. Focusing on the stresses within a relatively thin metallic structure when brisant explosives abutting the structure are detonated, this study directly affects the understanding of flux cutoff and high strain-rate resistivity changes in an expanding armature. The detonation wave is compressive, and the shock waves resulting from its transmission into a thin metallic structure cause both compressive and tensile regions, posing an ...


Optical Diagnostics On Helical Flux Compression Generators, A. A. Neuber, J. C. Dickens, H. Krompholz, M. F. C. Schmidt, Jason Baird, Paul Nicholas Worsey, M. Kristiansen Oct 2000

Optical Diagnostics On Helical Flux Compression Generators, A. A. Neuber, J. C. Dickens, H. Krompholz, M. F. C. Schmidt, Jason Baird, Paul Nicholas Worsey, M. Kristiansen

Mining and Nuclear Engineering Faculty Research & Creative Works

Explosively driven magnetic flux compression (MFC) has been object of research for more than three decades. Actual interest in the basic physical picture of flux compression has been heightened by a newly started Department of Defense (DoD) Multi-University Research Initiative. The emphasis is on helical flux compression generators comprising a hollow cylindrical metal liner filled with high explosives and at least one helical coil surrounding the liner. After the application of a seed current, magnetic flux is trapped and high current is generated by moving, i.e., expanding, the liner explosively along the winding of the helical coil. Several key ...