Open Access. Powered by Scholars. Published by Universities.®

Mining Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 31 - 37 of 37

Full-Text Articles in Mining Engineering

Optical Diagnostics On Helical Flux Compression Generators, A. A. Neuber, J. C. Dickens, H. Krompholz, M. F. C. Schmidt, Jason Baird, Paul Nicholas Worsey, M. Kristiansen Oct 2000

Optical Diagnostics On Helical Flux Compression Generators, A. A. Neuber, J. C. Dickens, H. Krompholz, M. F. C. Schmidt, Jason Baird, Paul Nicholas Worsey, M. Kristiansen

Mining Engineering Faculty Research & Creative Works

Explosively driven magnetic flux compression (MFC) has been object of research for more than three decades. Actual interest in the basic physical picture of flux compression has been heightened by a newly started Department of Defense (DoD) Multi-University Research Initiative. The emphasis is on helical flux compression generators comprising a hollow cylindrical metal liner filled with high explosives and at least one helical coil surrounding the liner. After the application of a seed current, magnetic flux is trapped and high current is generated by moving, i.e., expanding, the liner explosively along the winding of the helical coil. Several key factors …


Method Of Stemming A Blast Hole, Paul Nicholas Worsey Oct 1993

Method Of Stemming A Blast Hole, Paul Nicholas Worsey

Mining Engineering Faculty Research & Creative Works

A method of stemming a blast hole loaded with an explosive charge. The blast hole has side walls, an outwardly opening mouth and a central axis extending longitudinally of the blast hole. The method comprises inserting a conduit having a discharge end inwardly through the mouth of the blast hole and positioning the discharge end of the conduit within the blast hole generally adjacent the explosive charge. Particulate stemming material is forced under pressure through the conduit for exit from its discharge end into the blast hole toward the explosive charge thereby to pack stemming material in the blast hole …


Blast Plug And Stemming Construction For Blast Holes, Paul Nicholas Worsey Jan 1993

Blast Plug And Stemming Construction For Blast Holes, Paul Nicholas Worsey

Mining Engineering Faculty Research & Creative Works

A plug for use in stemming a blast hole having an explosive charge therein. The plug comprises a wedge member and a stabilizing structure on the wedge member. The wedge member tapers in an outward direction from a relatively wide base to a relatively narrow end and has a central axis extending endwise with respect to the wedge member. The stabilizing structure extends generally axially with respect to the wedge member from adjacent the base of the wedge member. The plug is to be positioned in the blast hole with the base of the wedge member facing inwardly toward the …


Dual Purpose Fuze, Paul Nicholas Worsey Jan 1993

Dual Purpose Fuze, Paul Nicholas Worsey

Mining Engineering Faculty Research & Creative Works

A dual purpose fuze for a projectile which can activate a quantity of material selected from a group including high explosive, low explosive, propellant and pyrotechnic compounds. The fuze includes a charge holder having a socket therein facing the quantity of material to be activated. A fuze charge located in the socket has a depression in it so formed as to cause the fuze charge to explode in a jet directed outwardly from the socket of sufficiently high energy to activate a high explosive in a high explosive projectile, the fuze charge being sufficiently small to prevent rupture of containment …


Mechanical Stemming Construction For Blast Holes And Method Of Use, Paul Nicholas Worsey Jul 1988

Mechanical Stemming Construction For Blast Holes And Method Of Use, Paul Nicholas Worsey

Mining Engineering Faculty Research & Creative Works

A stemming construction for a blast hole loaded with an explosive charge, comprising a tapering wedge member dispersed in the blast hole outwardly of the explosive charge with its narrower end facing outwardly toward the mouth of the blast hole, and particulate stemming material in the blast hole outwardly of the wedge member. Detonation of the explosive drives the wedge member into the stemming material to wedge the stemming material against the walls of the blast hole. The wedge member is preferably cone-shaped and can be provided with a stabilizing rod to prevent it from tilting.


Integrated Detonator Delay Circuits And Firing Console, Lawson J. Tyler, Paul Nicholas Worsey Jan 1987

Integrated Detonator Delay Circuits And Firing Console, Lawson J. Tyler, Paul Nicholas Worsey

Mining Engineering Faculty Research & Creative Works

A detonation system for use with supply of electrical energy has user operable firing console for selectably transmitting unit identification information, firing delay time information and selections from a command set including Output, Delay, Fire (Time), Abort, Power Up (Arm), Input, and Store. The console displays responses or information digested from responses by electrical delay detonators to the commands. The detonators have explosive, a capacitor for storing energy from the supply to set off the explosive, circuitry for charging the capacitor from the supply and transferring the energy from the capacitor to the explosive in response to first and second …


An Investigation Of Combined Thermal Weakening And Mechanical Disintegration Of Hard Rock, George Bromley Clark, T. F. Lehnhoff, Vernon Dale Allen, Mahendrakumar Ramkrishna Patel Jan 1973

An Investigation Of Combined Thermal Weakening And Mechanical Disintegration Of Hard Rock, George Bromley Clark, T. F. Lehnhoff, Vernon Dale Allen, Mahendrakumar Ramkrishna Patel

Mining Engineering Faculty Research & Creative Works

"The research under modified Contract No. H0220068 has been devoted to experimental thermal-mechanical fragmentation of Missouri red granite in place, and to supporting theoretical analyses. The results of the previous year's experimental work showed that thermal stresses are several times more effective in fragmenting hard rock when they are created within the rock rather than upon the surface. Also, large blocks {4-foot cubes) are not adequate to simulate the response of in situ rock.

Based upon laboratory tests an experimental round was designed analogous to an explosive blasting round with coiled wire heating elements placed in drill holes. Three displacement …