Open Access. Powered by Scholars. Published by Universities.®

Ocean Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Ocean Engineering

Transformation Of Nonlinear Waves In The Presence Of Wind, Current, And Vegetation, Haifei Chen Dec 2017

Transformation Of Nonlinear Waves In The Presence Of Wind, Current, And Vegetation, Haifei Chen

Electronic Theses and Dissertations

Accurate prediction of extreme wave events is crucial for the safe maritime activities and offshore operations. Improved knowledge of wave dissipation mechanisms due to breaking and vegetation leads to accurate wave forecast, protecting life and property along the coast. The scope of the thesis is to examine the wave transformations in the presence of wind, current, and vegetation, using a two-phase flow solver based on the open-source platform OpenFOAM. The Reynolds-Averaged Navier-Stokes (RANS) equations are coupled with a Volume of Fluid (VOF) surface capturing scheme and a turbulence closure model. This RANS-VOF model is adapted to develop a numerical wind-wave-current …


Micro-Spi Sediment Profile Imaging Micro-Inspector, Andrew P. Corvin, Caleb T. Davies, Matt R. Ferrari Jun 2017

Micro-Spi Sediment Profile Imaging Micro-Inspector, Andrew P. Corvin, Caleb T. Davies, Matt R. Ferrari

Mechanical Engineering

This project was proposed by Dr. Brian Paavo through a desire to more easily study the benthic sediment layers of the ocean. To do so, he asked us to build a simple and compact machine for use in sediment profile imagery (SPI). Although devices like this already exist, they are all large scale devices that require a ship with a crane to deploy, which is expensive and time consuming. Instead, he desired a “micro” SPI, which is capable of being deployed from a small vessel that can easily navigate shallow waters. Our interpretation of these requirements was as follows: a …


Multi-Modal And Short-Range Transmission Loss In Ice-Covered, Near-Shore Arctic Waters, Miles B. Penhale Jan 2017

Multi-Modal And Short-Range Transmission Loss In Ice-Covered, Near-Shore Arctic Waters, Miles B. Penhale

Dissertations, Master's Theses and Master's Reports

In the past century, extensive research has been done regarding the sound propagation in arctic ice sheets. The majority of this research has focused on low frequency propagation over long distances. One of the most commonly used excitation methods for air-ice-water layers has been explosives. However, environmental regulation has become more stringent, disallowing the use of almost all explosive excitation types. Due to changing climate conditions in these environments, new experimentation is warranted to determine sound propagation characteristics in, through, and under thin ice sheets, in shallow water, over short distances. In April, 2016 several experiments were conducted approximately 2 …