Open Access. Powered by Scholars. Published by Universities.®

Ocean Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Ocean Engineering

Sliding Mode Control Of A Nonlinear Wave Energy Converter Model, Tania Demonte Gonzalez Jan 2021

Sliding Mode Control Of A Nonlinear Wave Energy Converter Model, Tania Demonte Gonzalez

Dissertations, Master's Theses and Master's Reports

The most accurate wave energy converter models for heaving point absorbers include nonlinearities, which increase as resonance is achieved to maximize energy capture. The efficiency of wave energy converters can be enhanced by employing a control scheme that accounts for these nonlinearities. This project proposes a sliding mode control for a heaving point absorber that includes the nonlinear effects of the Froude-Krylov force. The sliding mode controller tracks a reference velocity that matches the phase of the excitation force to ensure higher energy absorption. This control algorithm is tested in regular linear waves and is compared to a complex-conjugate control …


Nonlinear Model Predictive Control Of Wave Energy Converter, Isha Malekar Jan 2021

Nonlinear Model Predictive Control Of Wave Energy Converter, Isha Malekar

Dissertations, Master's Theses and Master's Reports

In this report model predictive control (MPC) is applied to a simulated, spherical, point absorber wave energy converter to maximize energy extraction. Constraints are applied to the buoy's displacement and the power take-off (PTO) generator force. The WEC's "truth” model uses nonlinear Froude-Krylov (FK) hydrostatic and hydrodynamic forces. This is in contrast with previous studies where linear approximations are used in the form of a hydrostatic stiffness force and a wave excitation force. The nonlinear forces become significant when the vertical displacement of the buoy exceeds about 40% of the buoy's radius. Two versions of MPC are compared where optimal …