Open Access. Powered by Scholars. Published by Universities.®

Ocean Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

Fluid Dynamics

Vegetation

Articles 1 - 2 of 2

Full-Text Articles in Ocean Engineering

Importance Of Vegetation In Tsunami Mitigation: Evidence From Large Eddy Simulations With Fluid-Structure Interactions, Abhishek Mukherjee May 2023

Importance Of Vegetation In Tsunami Mitigation: Evidence From Large Eddy Simulations With Fluid-Structure Interactions, Abhishek Mukherjee

Dissertations

Communities worldwide are increasingly interested in nature-based solutions like coastal forests for the mitigation of coastal risks. Still, it remains unclear how much protective benefit vegetation provides, particularly in the limit of highly energetic flows after tsunami impact. The present thesis, using a three-dimensional incompressible computational fluid dynamics model with a fluid-structure interaction approach, aims to quantify how energy reflection and dissipation vary with different degrees of rigidity and vegetation density of a coastal forest.

In this study, tree trunks are represented as cylinders, and the elastic modulus of hardwood trees such as pine or oak is used to characterize …


Transformation Of Nonlinear Waves In The Presence Of Wind, Current, And Vegetation, Haifei Chen Dec 2017

Transformation Of Nonlinear Waves In The Presence Of Wind, Current, And Vegetation, Haifei Chen

Electronic Theses and Dissertations

Accurate prediction of extreme wave events is crucial for the safe maritime activities and offshore operations. Improved knowledge of wave dissipation mechanisms due to breaking and vegetation leads to accurate wave forecast, protecting life and property along the coast. The scope of the thesis is to examine the wave transformations in the presence of wind, current, and vegetation, using a two-phase flow solver based on the open-source platform OpenFOAM. The Reynolds-Averaged Navier-Stokes (RANS) equations are coupled with a Volume of Fluid (VOF) surface capturing scheme and a turbulence closure model. This RANS-VOF model is adapted to develop a numerical wind-wave-current …