Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Low Temperature Solution-Processed Sb:Sno2 Nanocrystals For Efficient Planar Perovskite Solar Cells, Yang Bai, Yanjun Fang, Yehao Deng, Qi Wang, Jingjing Zhao, Xiaopeng Zheng, Yang Zhang, Jinsong Huang Jan 2016

Low Temperature Solution-Processed Sb:Sno2 Nanocrystals For Efficient Planar Perovskite Solar Cells, Yang Bai, Yanjun Fang, Yehao Deng, Qi Wang, Jingjing Zhao, Xiaopeng Zheng, Yang Zhang, Jinsong Huang

Department of Mechanical and Materials Engineering: Faculty Publications

Inorganic metal oxide electron-transport layers (ETLs) have the potential to yield perovskite solar cells with improved stability, but generally need high temperature to form conductive and defect-less forms, which is not compatible with the fabrication of flexible and tandem solar cells. Here, we demonstrate a facile strategy for developing efficient inorganic ETLs by doping SnO2 nanocrystals (NCs) with a small amount of Sb using a low-temperature solution-processed method. The electrical conductivity was remarkably enhanced by Sb-doping, which increased the carrier concentration in Sb:SnO2 NCs. Moreover, the upward shift of the Fermi level owing to doping results in improved …


Electrochemical Capture Of Co2 From Natural Gas Using A High-Temperature Ceramic-Carbonate Membrane, Jingjing Tong, Lingling Zhan, Jie Fang, Minfang Han, Kevin Huang Jan 2015

Electrochemical Capture Of Co2 From Natural Gas Using A High-Temperature Ceramic-Carbonate Membrane, Jingjing Tong, Lingling Zhan, Jie Fang, Minfang Han, Kevin Huang

Faculty Publications

This study reports the first investigation of using a ceramic-carbonate dual-phase membrane to electrochemically separate CO2 from a simulated natural gas. The CO2 permeation flux density was systematically studied as a function of temperature, CO2 partial pressure and time. As expected, the flux density was observed to increase with temperature and CO2 partial pressure. Long-term stability test showed that flux density experienced an initial performance-improving “break-in” period followed by a slow decay. Post-test microstructural analysis suggested that a gradual loss of carbonate during the test could be the cause of the flux-time behavior observed.


The Effects Of Patch Properties On The Debonding Behavior Of Patched Beam-Plates, Anette M. Karlsson Oct 2000

The Effects Of Patch Properties On The Debonding Behavior Of Patched Beam-Plates, Anette M. Karlsson

Mechanical Engineering Faculty Publications

The debonding characteristics of patched structures are investigated in this study by means of an analytical model. In particular, the effects the lay-up sequence and edge tapering of a carbon-reinforced epoxy patch, as well as the beveling of an aluminum patch, have on the initiation, stability, and extent of the debonding are considered. The results presented show that both the degree of edge-tapering and the patch properties must be carefully selected in order to optimize the patched structure. It is also shown that when designing a patched system, it is important to model the correct boundary and load conditions to …