Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Biogas Combustion Characteristics In A Concentric Flow Slot Burner: Effects Of Co2 Concentration On Stability And Flame Structure, Maged Kiriakos Feb 2023

Biogas Combustion Characteristics In A Concentric Flow Slot Burner: Effects Of Co2 Concentration On Stability And Flame Structure, Maged Kiriakos

Theses and Dissertations

Biogas combustion is affected by the concentration of carbon dioxide. The successful applications of Biogas as a sustainable renewable alternative fuel produced from waste depend on its combustion stability, heat release, and pollution level. The aim of the current study is to apply new combustion technology and study the stability and combustion characteristics of natural gas with different percentages of carbon dioxide from 0 to 40% simulating biogas fuel. The stability characteristics and the temperature profiles of turbulent planar flames at different levels mixture inhomogeneity are investigated and presented in this work. The flames are created in a newly developed …


La0.7Sr0.3Fe0.7Ga0.3O3-Δ As Electrode Material For A Symmetrical Solid Oxide Fuel Cell, Zhibin Yang, Yu Chen, Chao Jin, Guoliang Xiao, Minfang Han, Fanglin Chen Mar 2015

La0.7Sr0.3Fe0.7Ga0.3O3-Δ As Electrode Material For A Symmetrical Solid Oxide Fuel Cell, Zhibin Yang, Yu Chen, Chao Jin, Guoliang Xiao, Minfang Han, Fanglin Chen

Fanglin Chen

In this research, La0.7Sr0.3Fe0.7Ga0.3O3−δ (LSFG) perovskite oxide was successfully prepared using a microwave-assisted combustion method, and employed as both anode and cathode in symmetrical solid oxide fuel cells. A maximum power density of 489 mW cm−2 was achieved at 800 °C with wet H2 as the fuel and ambient air as the oxidant in a single cell with the configuration LSFG|La0.8Sr0.2Ga0.83Mg0.17O3−δ|LSFG. Furthermore, the cells demonstrated good stability in H2 and acceptable sulfur tolerance.


La0.7Sr0.3Fe0.7Ga0.3O3-Δ As Electrode Material For A Symmetrical Solid Oxide Fuel Cell, Zhibin Yang, Yu Chen, Chao Jin, Guoliang Xiao, Minfang Han, Fanglin Chen Jan 2015

La0.7Sr0.3Fe0.7Ga0.3O3-Δ As Electrode Material For A Symmetrical Solid Oxide Fuel Cell, Zhibin Yang, Yu Chen, Chao Jin, Guoliang Xiao, Minfang Han, Fanglin Chen

Faculty Publications

In this research, La0.7Sr0.3Fe0.7Ga0.3O3−δ (LSFG) perovskite oxide was successfully prepared using a microwave-assisted combustion method, and employed as both anode and cathode in symmetrical solid oxide fuel cells. A maximum power density of 489 mW cm−2 was achieved at 800 °C with wet H2 as the fuel and ambient air as the oxidant in a single cell with the configuration LSFG|La0.8Sr0.2Ga0.83Mg0.17O3−δ|LSFG. Furthermore, the cells demonstrated good stability in H2 and acceptable sulfur tolerance.