Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Robotics

2022

Discipline
Institution
Publication
Publication Type

Articles 1 - 14 of 14

Full-Text Articles in Mechanical Engineering

Cad-Based Aerial Trajectory Generation And 3d Mapping For Close-Quarter Inspection, Angel Guillermo Ortega Castillo Dec 2022

Cad-Based Aerial Trajectory Generation And 3d Mapping For Close-Quarter Inspection, Angel Guillermo Ortega Castillo

Open Access Theses & Dissertations

Robotic technologies for inspection purposes of large-scale structures have grown in interest.Such technologies are encouraged to reduce the risk in which human operators are involved and to reduce costs due to downtime of the equipment. In the Energy sector, high interest is placed on power plant components where their correct operation is paramount. This work is inspired by the synthetic vision systems for aerial vehicles that use three-dimensional space (3D) to provide pilots with clear and intuitive means of understanding their flying environment. This work can be separated into three main sections: Trajectory Generation from Computer-Aided Design (CAD) Models, Crack …


A Benchtop Robotic Automation Approach For Manufacturing Prefilled Syringes, Yehua Zhong Nov 2022

A Benchtop Robotic Automation Approach For Manufacturing Prefilled Syringes, Yehua Zhong

All Theses

Automation and robotics have become a staple in the biological manufacturing sector due to their ability to efficiently work without operator inputs, with a high degree of accuracy and repeatability. Industrial robotic arms, in particular, present themselves as valuable tools for biological manufacturing scenarios that require customized solutions due to their ease of programming and flexibility. The traditional hospital-focused healthcare system was organically developed to address acute conditions, however, in recent years, due to the unprecedented occurrence of emergencies happening more frequently, fast and efficient drug production becomes important [17]. This thesis represents the use of a benchtop robot and …


A Survey Of Smart Manufacturing For High-Mix Low-Volume Production In Defense And Aerospace Industries, Tanjida Tahmina, Mauro Garcia, Zhaohui Geng, Bopaya Bidanda Oct 2022

A Survey Of Smart Manufacturing For High-Mix Low-Volume Production In Defense And Aerospace Industries, Tanjida Tahmina, Mauro Garcia, Zhaohui Geng, Bopaya Bidanda

Manufacturing & Industrial Engineering Faculty Publications and Presentations

Defense and aerospace industries usually possess unique high-mix low-volume production characteristics. This uniqueness generally calls for prohibitive production costs and long production lead-time. One of the major trends in advanced, smart manufacturing is to be more responsive and better readiness while ensuring the same or higher production quality and lower cost. This study reviews the state-of-the-art manufacturing technologies to solve these issues and previews two levels of flexibility, i.e., system and process, that could potentially reduce the costs while increasing the production volume in such a scenario. The main contribution of the work includes an assessment of the current solutions …


Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg Jun 2022

Developing A Miniature Smart Boat For Marine Research, Michael Isaac Eirinberg

Computer Engineering

This project examines the development of a smart boat which could serve as a possible marine research apparatus. The smart boat consists of a miniature vessel containing a low-cost microcontroller to live stream a camera feed, GPS telemetry, and compass data through its own WiFi access point. The smart boat also has the potential for autonomous navigation. My project captivated the interest of several members of California Polytechnic State University, San Luis Obispo’s (Cal Poly SLO) Marine Science Department faculty, who proposed a variety of fascinating and valuable smart boat applications.


Design Of A Proprioceptive Actuator Utilizing A Cycloidal Gearbox, Craig John Kimball Jun 2022

Design Of A Proprioceptive Actuator Utilizing A Cycloidal Gearbox, Craig John Kimball

Master's Theses

Legged robotics creates the demand for high torque compact actuators able to develop high instantaneous torque. Proprioceptive actuator design theory is a design theory that removes the need for a torque feedback device and relies on the stiffness in the leg for absorbing the high Ground Impact Forces created by walking locomotion. It utilizes a high torque density motor paired with a gearbox with a high gear ratio for torque multiplication. Previously work has been done to design a proprioceptive actuator design that utilizes a planetary gearbox to create a modular low-cost actuator for legged robotics. The purpose of this …


Design And Control Of Next-Generation Uavs For Effectively Interacting With Environments, Caiwu Ding May 2022

Design And Control Of Next-Generation Uavs For Effectively Interacting With Environments, Caiwu Ding

Dissertations

In this dissertation, the design and control of a novel multirotor for aerial manipulation is studied, with the aim of endowing the aerial vehicle with more degrees of freedom of motion and stability when interacting with the environments. Firstly, it presents an energy-efficient adaptive robust tracking control method for a class of fully actuated, thrust vectoring unmanned aerial vehicles (UAVs) with parametric uncertainties including unknown moment of inertia, mass and center of mass, which would occur in aerial maneuvering and manipulation. The effectiveness of this method is demonstrated through simulation. Secondly, a humanoid robot arm is adopted to serve as …


Cloudbots: Autonomous Atmospheric Explorers, Akash Binoj May 2022

Cloudbots: Autonomous Atmospheric Explorers, Akash Binoj

Honors Scholar Theses

The CloudBot is an autonomous weather balloon that operates on the principle of variable buoyancy to ascend and descend in the atmosphere. This project aims to develop a device that will collect atmospheric measurements and communicate them mid-flight. The apparatus consists of a helium-filled balloon, the robotic payload, and an air cell. The fixed-volume helium balloon at the top provides an upwards buoyancy force, while the air cell at the bottom can hold a variable amount of pressure to adjust the weight of the CloudBot. By doing so, it is able to travel in storm conditions and collect valuable atmospheric …


Model Based Force Estimation And Stiffness Control For Continuum Robots, Vincent A. Aloi May 2022

Model Based Force Estimation And Stiffness Control For Continuum Robots, Vincent A. Aloi

Doctoral Dissertations

Continuum Robots are bio-inspired structures that mimic the motion of snakes, elephant trunks, octopus tentacles, etc. With good design, these robots can be naturally compliant and miniaturizable, which makes Continuum Robots ideal for traversing narrow complex environments. Their flexible design, however, prevents us from using traditional methods for controlling and estimating loading on rigid link robots.

In the first thrust of this research, we provided a novel stiffness control law that alters the behavior of an end effector during contact. This controller is applicable to any continuum robot where a method for sensing or estimating tip forces and pose exists. …


Autonomous Material Refill For Swarm 3d Printing, William C. Jones May 2022

Autonomous Material Refill For Swarm 3d Printing, William C. Jones

Mechanical Engineering Undergraduate Honors Theses

3D printing currently offers robust and cheap rapid prototyping solutions. While standard 3D printing remains at the periphery of mass production, the technology serves as a starting point for the development of swarm manufacturing. Since swarm manufacturing is predicated upon autonomy, swarm technology companies such as AMBOTS are seeking to minimize human involvement in the swarm’s functions. At present, the 3D printing swarm consists of the printers, a transporter which can take them between job sites, and the floor tiles which provide power and support the build surfaces. To add to this ecosystem, this project is focused on the design …


A Low-Cost And Low-Tech Solution To Test For Variations Between Multiple Offline Programming Software Packages., Steffen Wendell Bolz Apr 2022

A Low-Cost And Low-Tech Solution To Test For Variations Between Multiple Offline Programming Software Packages., Steffen Wendell Bolz

Masters Theses & Specialist Projects

This research paper chronicles the attempt to bring forth a low-cost and low-tech testing methodology whereby multiple offline programming (OLP) software packages’ generated programs may be compared when run on industrial robots. This research was initiated by the discovery that no real research exists to test between iterations of OLP software packages and that most research for positional accuracy and/or repeatability on industrial robots is expensive and technologically intensive. Despite this, many countries’ leaders are pushing for intensive digitalization of manufacturing and Small and Mediumsized Enterprises (SMEs) are noted to be lagging in adoption of such technologies. The research consisted …


Water Based Soil Fluidization Using A Soft Eversion Robot, James E. Hand Apr 2022

Water Based Soil Fluidization Using A Soft Eversion Robot, James E. Hand

Doctoral Dissertations and Master's Theses

Soft robotics, a form of robotics that incorporates nonrigid components, continues to grow in scope, system design, and application. A recent addition to this field is the Vine Robot platform, a bio-inspired robot designed by Stanford University in 2017. Its method of movement, known as eversion, closely resembles the way that a vine grows along a tree, giving it its name. The focus of this research was to take its proven abilities of underwater vine-like movement and soil fluidization, a process where granular materials are converted from a solid-like state to a fluid-like state, to create an underwater eversion robot …


Can We Make Our Robot Play Soccer? Influence Of Collaborating With Preservice Teachers And Fifth Graders On Undergraduate Engineering Students' Learning During A Robotic Design Process (Work In Progress), Krishnanand Kaipa, Jennifer Kidd, Julia Noginova, Francisco Cima, Stacie Ringleb, Orlando Ayala, Pilar Pazos, Kristie Gutierrez, Min Jung Lee Jan 2022

Can We Make Our Robot Play Soccer? Influence Of Collaborating With Preservice Teachers And Fifth Graders On Undergraduate Engineering Students' Learning During A Robotic Design Process (Work In Progress), Krishnanand Kaipa, Jennifer Kidd, Julia Noginova, Francisco Cima, Stacie Ringleb, Orlando Ayala, Pilar Pazos, Kristie Gutierrez, Min Jung Lee

Mechanical & Aerospace Engineering Faculty Publications

This work-in-progress paper describes engineering students’ experiences in an NSF-funded project that partnered undergraduate engineering students with pre-service teachers to plan and deliver robotics lessons to fifth graders at a local school. This project aims to address an apparent gap between what is taught in academia and industry’s expectations of engineers to integrate perspectives from outside their field to solve modern societal problems requiring a multidisciplinary approach. Working in small teams over Zoom, participating engineering, education, and fifth grade students designed, built, and coded bio-inspired COVID companion robots. The goal for the engineering students was to build new interprofessional skills, …


Top-Down & Bottom-Up Approaches To Robot Design, Dylan Michael Covell Jan 2022

Top-Down & Bottom-Up Approaches To Robot Design, Dylan Michael Covell

Graduate Theses, Dissertations, and Problem Reports

This thesis presents a study of different engineering design methodologies and demonstrates their effectiveness and limitations in actual robot designs. Some of these methods were blended together with focus on providing an easily interpreted project design flow while implementing more bottom-up, or feedback, elements into the design methodology. Typically design methods are learned through experience, and design taught in academia aims to shape and formalize previous experience. Usually, inexperienced engineers are taught approaches resembling the Verein Deutscher Ingenieure (VDI) 2221 process. This method presented by the Association of German Engineers in 2006 is regarded as the general system design process. …


A Study Of Reduced Activation Ferritic Martensitic Metal Core Wire For Wire Arc Additive Manufacturing, Alexander L. Reichenbach Jan 2022

A Study Of Reduced Activation Ferritic Martensitic Metal Core Wire For Wire Arc Additive Manufacturing, Alexander L. Reichenbach

Electronic Theses and Dissertations

This study seeks to determine the technical feasibility of fabricating reduced activation ferritic martensitic (RAFM) steel parts, using a wire arc additive manufacturing (WAAM) process. The WAAM process, manufactures a part by depositing layers of metal onto a substrate to build a large scale near net shape part. RAFM alloy steels are next generation steels designed to resist radiation effects in the radiation intense working environments, such as nuclear reactors. To achieve this, process development and testing to design the WAAM production process with the custom RAFM filler wire was carried out. Several welding waveform modes were tested, and it …