Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 9 of 9

Full-Text Articles in Mechanical Engineering

Designing A Biomimetic Testing Platform For Actuators In A Series-Elastic Co-Contraction System, Ryan Tyler Schroeder Dec 2014

Designing A Biomimetic Testing Platform For Actuators In A Series-Elastic Co-Contraction System, Ryan Tyler Schroeder

UNLV Theses, Dissertations, Professional Papers, and Capstones

Actuators determine the performance of robotic systems at the most intimate of levels. As a result, much work has been done to assess the performance of different actuator systems. However, biomimetics has not previously been utilized as a pretext for tuning a series elastic actuator system with the purpose of designing an empirical testing platform. Thus, an artificial muscle tendon system has been developed in order to assess the performance of two distinct actuator types: (1) direct current electromagnetic motors and (2) ultrasonic rotary piezoelectric motors. Because the design of the system takes advantage of biomimetic operating principles such as …


Ubot-7: The Design Of A Compliant Dexterous Mobile Manipulator, Jonathan Cummings Nov 2014

Ubot-7: The Design Of A Compliant Dexterous Mobile Manipulator, Jonathan Cummings

Masters Theses

This thesis presents the design of uBot-7, the latest version of a dexterous mobile manipulator. This platform has been iteratively developed to realize a high performance-to-cost dexterous whole body manipulator with respect to mobile manipulation. The semi-anthropomorphic design of the uBot is a demonstrated and functional research platform for developing advanced autonomous perception, manipulation, and mobility tasks. The goal of this work is to improve the uBot’s ability to sense and interact with its environment in order to increase the platforms capability to operate dexterously, through the incorporation of joint torque feedback, and safely, through the implementation of passive and …


Design And Analysis Of Robotically-Controlled Minimally Invasive Surgical Instruments, Jordan D. Tanner Nov 2014

Design And Analysis Of Robotically-Controlled Minimally Invasive Surgical Instruments, Jordan D. Tanner

Theses and Dissertations

Robot-assisted minimally invasive surgery is used to perform intricate surgical tasks through small incisions using long, slender instruments. The miniaturization of these instruments is advantageous to both surgeon and patient because smaller instruments reduce trauma to surrounding tissue, decrease patient recovery times, and can be used in confined spaces otherwise inaccessible using larger instruments. However, miniaturization of existing designs is limited by friction between moving parts, the volume occupied by the end effector, and manufacturing and assembly constraints. The objective of this work is to develop and analyze concepts that can be used in robot-assisted needlescopic surgery. The concepts are …


Extracting Depth Information From Stereo Vision System, Using A Correlation And A Feature Based Methods, Mahmoud Abdelhamid Sep 2014

Extracting Depth Information From Stereo Vision System, Using A Correlation And A Feature Based Methods, Mahmoud Abdelhamid

Mahmoud M Abdelhamid

This thesis presents a new method to extract depth information from stereo-vision acquisitions using a feature and a correlation based approaches. The main implementation of the proposed method is in the area of Autonomous Pick & Place, using a robotic manipulator. Current vision-guided robotics are still based on a priori training and teaching steps, and still suffer from long response time. The study uses a stereo triangulation setup where two Charged Coupled Devices CCDs are arranged to acquire the scene from two different perspectives. The study discusses the details of two methods to calculate the depth; firstly a correlation matching …


Vex Robotics, Ho Joon Cha, Joshua Del Real, Jamie Kalb, Thomas Nance, Jenny Yang Jun 2014

Vex Robotics, Ho Joon Cha, Joshua Del Real, Jamie Kalb, Thomas Nance, Jenny Yang

Mechanical Engineering Senior Theses

The objective of our project was to design and construct a control system for communication between two autonomous robots, of different size and capabilities, in an environment with numerous obstacles and challenges. These challenges, completed autonomously, involved moving over and under barriers along with the obtainment and transportation of spherical objects. Our project was tied to the VEX Robotics competition environment as we tested our robots by competing at the World Championships. Unfortunately, due to time and budget considerations, we had to scale back our sensor subsystem. This led to a simpler control system than originally intended; however, we were …


Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young May 2014

Modeling, Analysis, And Control Of A Mobile Robot For In Vivo Fluoroscopy Of Human Joints During Natural Movements, Matthew A. Young

Doctoral Dissertations

In this dissertation, the modeling, analysis and control of a multi-degree of freedom (mdof) robotic fluoroscope was investigated. A prototype robotic fluoroscope exists, and consists of a 3 dof mobile platform with two 2 dof Cartesian manipulators mounted symmetrically on opposite sides of the platform. One Cartesian manipulator positions the x-ray generator and the other Cartesian manipulator positions the x-ray imaging device. The robotic fluoroscope is used to x-ray skeletal joints of interest of human subjects performing natural movement activities. In order to collect the data, the Cartesian manipulators must keep the x-ray generation and imaging devices accurately aligned while …


Towards A Sustainable Modular Robot System For Planetary Exploration, S. G. M. Hossain Apr 2014

Towards A Sustainable Modular Robot System For Planetary Exploration, S. G. M. Hossain

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This thesis investigates multiple perspectives of developing an unmanned robotic system suited for planetary terrains. In this case, the unmanned system consists of unit-modular robots. This type of robot has potential to be developed and maintained as a sustainable multi-robot system while located far from direct human intervention. Some characteristics that make this possible are: the cooperation, communication and connectivity among the robot modules, flexibility of individual robot modules, capability of self-healing in the case of a failed module and the ability to generate multiple gaits by means of reconfiguration. To demonstrate the effects of high flexibility of an individual …


Analysis Of A Dual Scissored-Pair,Variable-Speed, Control Moment Gyroscope Driven Spherical Robot, Richard Chase Jan 2014

Analysis Of A Dual Scissored-Pair,Variable-Speed, Control Moment Gyroscope Driven Spherical Robot, Richard Chase

Wayne State University Dissertations

The objective of this research is to compare barycenter offset based designs of spherical robots to control moment gyroscope (CMG) based designs in order to determine which approach is most effective. The first objective was to develop a list of current state of the art designs in order to gain an overall understanding of what the obstacles in this area of research were. The investigation showed that barycenter offset designs can produce a low, continuous output torque, whereas CMG based designs can usually only produce a high, momentary output torque. The second objective was to develop a CMG based design …


Review Of Development Stages In The Conceptual Design Of An Electro Hydrostatic Actuator For Robotics, Velibor Karanović, Mitar Jocanović, Vukica Jovanović Jan 2014

Review Of Development Stages In The Conceptual Design Of An Electro Hydrostatic Actuator For Robotics, Velibor Karanović, Mitar Jocanović, Vukica Jovanović

Engineering Technology Faculty Publications

The design of modern robotic devices faces numerous requirements and limitations which are related to optimization and robustness. Consequently, these stringent requirements have caused improvements in many engineering areas and lead to development of new optimization methods which better handle new complex products designed for application in industrial robots. One of the newly developed methods used in industrial robotics is the concept of a self-contained power device, an Electro-Hydrostatic Actuator (EHA). EHA devices were designed with a central idea, to avoid the possible drawbacks which were present in other types of actuators that are currently used in robotic systems. This …