Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 14 of 14

Full-Text Articles in Mechanical Engineering

Materials-Processing Relationships For Metal Fused Filament Fabrication Of Ti-6al-4v Alloy., Paramjot Singh May 2020

Materials-Processing Relationships For Metal Fused Filament Fabrication Of Ti-6al-4v Alloy., Paramjot Singh

Electronic Theses and Dissertations

Additive manufacturing (AM) is at the mainstream to cater the needs for rapid tooling and small-scale part production. The metal AM of complex geometries is widely accepted and promoted in the industry. While several metal AM technologies exist and are matured to a level where expectation in terms of design and properties are possible to realize. But the metal AM suffers from the heavy expense to acquire equipment, isotropic property challenges, and potential hazards to work with loose reactive metal powder. With this motivation, the dissertation aims to develop the fundamental aspects to print metal parts with bound Ti-6Al-4V powder …


A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande May 2019

A Study On Ultrasonic Energy Assisted Metal Processing : Its Correeltion With Microstructure And Properties, And Its Application To Additive Manufacturing., Anagh Deshpande

Electronic Theses and Dissertations

Additive manufacturing or 3d printing is the process of constructing a 3-dimensional object layer-by-layer. This additive approach to manufacturing has enabled fabrication of complex components directly from a computer model (or a CAD model). The process has now matured from its earlier version of being a rapid prototyping tool to a technology that can fabricate service-ready components. Development of low-cost polymer additive manufacturing printers enabled by open source Fused Deposition Modeling (FDM) printers and printers of other technologies like SLA and binder jetting has made polymer additive manufacturing accessible and affordable. But the metal additive manufacturing technologies are still expensive …


Process-Property-Microstructure Relationships In Laser-Powder Bed Fusion Of 420 Stainless Steel., Subrata Deb Nath Dec 2018

Process-Property-Microstructure Relationships In Laser-Powder Bed Fusion Of 420 Stainless Steel., Subrata Deb Nath

Electronic Theses and Dissertations

Laser-powder bed fusion (L-PBF) is an additive manufacturing technique for fabricating metal components with complex design and customized features. However, only a limited number of materials have been widely studied using L-PBF. AISI 420 stainless steel, an alloy with a useful combination of high strength, hardness, and corrosion resistance, is an example of one such material where few L-PBF investigations have emerged to date. In this dissertation, L-PBF experiments were conducted using 420 stainless steel powders to understand the effects of chemical composition, particle size distribution and processing parameters on ensuing physical, mechanical and corrosion properties and microstructure in comparison …


Microstructures And Hardness Of Tig Welded Experimental 57fe15cr25ni Steel, Parikin Parikin, Mohammad Dani, Abu Khalid Rivai, Agus Hadi Ismoyo, Riza Iskandar, Arbi Dimyati Aug 2018

Microstructures And Hardness Of Tig Welded Experimental 57fe15cr25ni Steel, Parikin Parikin, Mohammad Dani, Abu Khalid Rivai, Agus Hadi Ismoyo, Riza Iskandar, Arbi Dimyati

Makara Journal of Technology

The microstructures and hardness of tungsten inert gas (TIG) welded experimental 57Fe15Cr25Ni steel were investigated through optical–scanning electron microscopy analyses and with a hardness tester, respectively. The welding process restructured the constituent atoms into regular and irregular crystal lattices. Rapid cooling of the weld metal allowed the formation of a dendritic (columnar) structure, with porous grains. By contrast, slow cooling influenced HAZ and led to the formation of grain structures. The crystal lattice became more organized and larger than other zones. Meanwhile, the base metal formed circular nets that covered large area inside thick and thin grain boundaries. The diffraction …


Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime Nov 2017

Effect Of Ultrasonic Treatment On The Microstructure And Mechanical Properties Of Al6061 And Composite, Ana S. Exime

FIU Electronic Theses and Dissertations

In this study, the effect of ultrasonic treatment (UST) parameters such as amplitude, sonication time, and melt temperature on microstructure and microhardness of Al 6061 alloy is evaluated. The effect of UST on the dispersion of tungsten disulfide (WS2) and carbon nanotubes (CNT) as reinforcement particles in Al 6061 during casting is also studied. The cast Al 6061 with UST demonstrated 32% grain size reduction and 8% increase in the microhardness for optimum processing conditions. The cavitation process induced by UST is responsible for the refinement in microstructure and increase of hardness by enhancing the degassing and nucleation …


Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi Jan 2017

Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi

Theses and Dissertations--Mechanical Engineering

Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications.

The SLM process parameters such as laser power, …


Study On The Impact Abrasive Wear Of New Super-High Manganese Steel, Wenyan Wang Oct 2016

Study On The Impact Abrasive Wear Of New Super-High Manganese Steel, Wenyan Wang

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Void Closure And The Sensitivity Analysis Of The Process Parameters During Forging Of Large Steel Ingot, Bo Jiang, Yazheng Liu, Jianlin Sun, Guanglei Liu, Zhilin Wang, Zhigang Zhao Oct 2016

Void Closure And The Sensitivity Analysis Of The Process Parameters During Forging Of Large Steel Ingot, Bo Jiang, Yazheng Liu, Jianlin Sun, Guanglei Liu, Zhilin Wang, Zhigang Zhao

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Weld Thermal Simulation Of Crmov With Pwht In Type Iv Region, Bin Xu Oct 2016

Weld Thermal Simulation Of Crmov With Pwht In Type Iv Region, Bin Xu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Cryogenic Processing Of Al 7050-T7451 Alloy For Improved Surface Integrity, Bo Huang Jan 2016

Cryogenic Processing Of Al 7050-T7451 Alloy For Improved Surface Integrity, Bo Huang

Theses and Dissertations--Mechanical Engineering

Al 7050-T7451 alloy with good combinations of strength, stress corrosion cracking resistance and toughness, is used broadly in the aerospace/aviation industry for fatigue-critical airframe structural components. However, it is also considered as a highly anisotropic alloy as the crack growth behavior along the short transverse direction is very different from the one in the long transverse direction, due to the inhomogeneous microstructure with the elongated grains distributed in the work material used in the sheet/plate applications. Further processes on these materials are needed to improve its mechanical and material properties and broaden its applications.

The material with ultra-fine or nano …


The Microstructure And The Electrochemical Behavior Of Cobalt Chromium Molybdenum Alloys From Retrieved Hip Implants, Christopher P. Emerson May 2015

The Microstructure And The Electrochemical Behavior Of Cobalt Chromium Molybdenum Alloys From Retrieved Hip Implants, Christopher P. Emerson

FIU Electronic Theses and Dissertations

Because of their excellent mechanical, tribological, and electrochemical properties, Cobalt Chromium Molybdenum alloys have been used as the material for both the stem and head of modular hip implants. Corrosion is one mechanism by which metal debris, from these implants, is generated, which can lead to adverse events that requires revision surgery. Manufacturing process such as wrought, as-cast, and powder metallurgy influences the microstructure, material properties, and performance of these implants

The current research focuses on analyzing the microstructure of CoCrMo alloys from retrieved hip implants with optical and scanning electron microscopy. Additionally, energy disperse spectroscopy was utilized to determine …


Probabilistic Simulation Of Solidification Microstructure Evolution During Laser-Based Metal Deposition, Jingwei Zhang, Frank W. Liou, William Seufzer, Joseph William Newkirk, Zhiqiang Fan, Heng Liu, Todd E. Sparks Aug 2013

Probabilistic Simulation Of Solidification Microstructure Evolution During Laser-Based Metal Deposition, Jingwei Zhang, Frank W. Liou, William Seufzer, Joseph William Newkirk, Zhiqiang Fan, Heng Liu, Todd E. Sparks

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A predictive model, based on a Cellular Automaton (CA) - Finite Element (FE) method, has been developed to simulate microstructure evolution during metal solidification for a laser based additive manufacturing process. The macroscopic FE calculation was designed to update the temperature field and simulate a high cooling rate. In the microscopic CA model, heterogeneous nucleation sites, preferential growth orientation and dendritic grain growth kinetics were simulated. The CA model was able to show the entrapment of neighboring cells and the relationship between undercooling and the grain growth rate. The model predicted the dendritic grain size, structure, and morphological evolution during …


Microstructure Selection Of Sm-Co-Al Alloys To Increase Magnetization, Brian Dick Apr 2012

Microstructure Selection Of Sm-Co-Al Alloys To Increase Magnetization, Brian Dick

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

An ever increasing demand for higher performing magnets drives the need for new and innovative methods to achieve this goal. Sm-Co rare earth permanent magnets have a unique eutectic microstructure that, through refinement, could become a two-phase magnet which would significantly increase their energy product. The eutectic structure of Sm8Co92 is comprised of αCo rods embedded within a Sm2Co17 matrix. If the rods are small enough to encourage exchange coupling and the matrix is smaller than the single domain limit, then an efficient two-phase magnet is created.

Refining the Co rods and matrix size …


Evaluation Of Mechanical Properties And Microstructure For Laser Deposition Process And Welding Process, Yaxin Bao, Jianzhong Ruan, Todd E. Sparks, Jambunathan Anand, Joseph William Newkirk, Frank W. Liou Aug 2006

Evaluation Of Mechanical Properties And Microstructure For Laser Deposition Process And Welding Process, Yaxin Bao, Jianzhong Ruan, Todd E. Sparks, Jambunathan Anand, Joseph William Newkirk, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Laser Aided Manufacturing Process (LAMP) can be applied to repair steel die/molds which are currently repaired using traditional welding process in industry. In order to fully understand the advantages of laser deposition repair process over traditional welded-repair process, the mechanical properties such as tensile strength and hardness of H13 tool steel samples produced by these two processes were investigated. The microstructure and fracture surface of the samples were analyzed using optical microscope and SEM (Scanning Electron Microscope). Moreover, depositions on substrates with different shapes were studied to evaluate the performance of LAMP on damaged parts with complicated geometric shape.