Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 11 of 11

Full-Text Articles in Mechanical Engineering

Exploring The Intersection Of Biology And Design For Product Innovations, Ajay P. Malshe, Salil Bapat, Kamlakar Rajurkar, Ang Ang, Jean-Marc Linares May 2023

Exploring The Intersection Of Biology And Design For Product Innovations, Ajay P. Malshe, Salil Bapat, Kamlakar Rajurkar, Ang Ang, Jean-Marc Linares

Department of Mechanical and Materials Engineering: Faculty Publications

Design, development, productization, and applications of advanced product concepts are pressing for higher multifunctionality, resilience, and maximization of available resources equitably to meet the growing and continuing demands of global customers. These demands have further accelerated during the recent COVID- 19 pandemic and are continuing to be a challenge. Engineering designs are one of the most effective ways to endow products with functions, resilience, and sustainability. Biology, through millions of years of evolution, has met these acute requirements under severe resource and environmental constraints. As the manufacturing of products is reaching the fundamental limits of raw materials, labor, and resource …


Adjust-A-Ramp, Taylor Sharrits, Courtney Banks, Emily Beck, Jazmin Buenrostro Jan 2022

Adjust-A-Ramp, Taylor Sharrits, Courtney Banks, Emily Beck, Jazmin Buenrostro

Williams Honors College, Honors Research Projects

Adjust-A-Ramp is a portable ramp designed to ensure the safety of consumers and prevention of damage to cars, specifically towards low profile cars. A low-profile vehicle includes any vehicle that has a clearance off the ground of 6.5 inches or less. Advantages of low-profile vehicles include improved handling, better braking, increased fuel efficiency, increased stability, and an overall luxury aesthetic. The reduced tire size increases grip on smooth surfaces with better wheel response, creating a fast, more efficient ride. The simple tire tread patterns and the stiff sidewalls allow for lower rolling resistance which increases fuel economy. The Adjust-A-Ramp can …


Mechanical Strength Of Germanium Doped Low Oxygen Concentration Czochralski Silicon And The Effect Of Oxygen On Nitrogen Dissociation In Silicon, Junnan Wu Jan 2021

Mechanical Strength Of Germanium Doped Low Oxygen Concentration Czochralski Silicon And The Effect Of Oxygen On Nitrogen Dissociation In Silicon, Junnan Wu

McKelvey School of Engineering Theses & Dissertations

During the Czochralski growth of silicon, it is inevitable for oxygen to be incorporated into the silicon crystal from the quartz crucible. Interstitial oxygen improves the mechanical strength of silicon by pinning and locking dislocations, but also generates thermal donors during device processes, shifting the electrical resistivity. For silicon wafers used in radio frequency (RF) applications, it is important to ensure the high resistivity of the substrates for good RF characteristics. Therefore, the oxygen level in these high resistivity silicon wafers is kept very low (< 2.5 × 1017 atoms/cm3) by carefully controlling the Czochralski growth conditions, in order to reduce the thermal donor concentration to an acceptable level. Silicon on insulator (SOI) substrates made from high resistivity wafers have been widely used for RF applications. SOI manufacturing includes multiple high temperature thermal cycles (1000 – 1100 °C), during which the high resistivity wafers are prone to slip and warpage. Therefore, it is technologically important to recover some of the lost mechanical strength due to the lack of oxygen by introducing electrically inactive impurities to suppress the dislocation generation and mobility in silicon. Germanium (Ge) as an isovalent impurity is 4% larger in size and forms a solid solution with silicon in the entire concentration range. Previous works have shown Ge doping at high concentrations above 6 × 1019 atoms/cm3 increased mechanical strength of silicon with high oxygen concentration (~ 1 × 1018 atoms/cm3). In this work, we explore the effect of Ge doping (7 - 9 × 1019 atoms/cm3) on the mechanical strength of low oxygen concentration (< 2 × 1017 atoms/cm3) silicon, where the oxygen associated dislocation locking and pinning are very low. A mechanical bending test was used to study the average dislocation migration velocity and the critical shear stress of dislocations motion at 600 – 750 °C for Ge doped, nitrogen doped, and undoped low oxygen samples, as well as nitrogen doped float-zone and un-doped high oxygen concentration samples. Next, we fabricated SOI substrates using these high resistivity wafers and compared their slip generation rates and the slip-free epitaxial grow temperature windows after the high temperature thermal cycles (> 1000 °C). Our results indicate at lower temperature Ge doesn’t affect the dislocation mobility …


An Affordable And Portable Palpable System For Sensing Breast Tissue Abnormalities, Cody J. Clarke Sep 2020

An Affordable And Portable Palpable System For Sensing Breast Tissue Abnormalities, Cody J. Clarke

Montview Journal of Research & Scholarship

Due to the high cost of equipment and lack of trained personnel, manual palpation is a preferred alternative breast examination technique over mammography. The process involves a thorough search pattern using trained fingers and applying adequate pressure, with the objective of identifying solid masses from the surrounding breast tissue. However, palpation requires skills that must be obtained through adequate training in order to ensure proper diagnosis. Consequently, palpation performance and reporting techniques have been inconsistent. Automating the palpation technique would optimize the performance of self-breast examination, optimize clinical breast examinations (CBE), and enable the visualization of breast abnormalities as well …


Tabletop Mechanical Tester, Jamie Dombroski, Brian English, Richard Leffler, Andrew Shirk Jan 2020

Tabletop Mechanical Tester, Jamie Dombroski, Brian English, Richard Leffler, Andrew Shirk

Williams Honors College, Honors Research Projects

The need for hands-on and face-to-face experiences in the engineering classroom is very great. The equations, principles, and concepts can all be learned, but without the visual and tactile application, these don’t always sink in or become concrete. A small-scale tensile test machine was designed, sourced, manufactured, and tested for the purpose of being applied in classroom settings to provide this experience to engineering students. Extensive research was performed concerning tensile machines on the market, the essential elements of which are the load cell, grips, crosshead, extensometer, motor, and frame. The raw materials for the frame were purchased and drawings …


The Development Of A Vacuum Forming System For Kydex® And Other Thermoplastic Sheet, Andrew G. Smith May 2017

The Development Of A Vacuum Forming System For Kydex® And Other Thermoplastic Sheet, Andrew G. Smith

Electronic Theses and Dissertations

Vacuum forming is a popular, cost effective method amongst large and small scale applications. The method is used to mold a material to the surface of a mold/pattern in order to create a negative copy for reproduction or an object in positive form. The prototype vacuum forming system developed and documented herein is of a membrane-seal type that consists of three (3) principle parts: radial platen, Hinged Frame and Platen Support Assembly, and a PVC surge tank. Each part is described in detail through design, manufacturing, and testing processes. The design supports functional versatility, small scale molding, and uses readily …


Flow Stress And Microstructure Models Of Alloys, Lars-Erik Lindgren Oct 2016

Flow Stress And Microstructure Models Of Alloys, Lars-Erik Lindgren

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Feasibility Study Of Custom Manufacturing Of Ionic Polymer-Metal Composite Sensors, Shelby E. Nelson Aug 2015

Feasibility Study Of Custom Manufacturing Of Ionic Polymer-Metal Composite Sensors, Shelby E. Nelson

UNLV Theses, Dissertations, Professional Papers, and Capstones

The ability to create an ion exchange membrane with any shape or thickness through custom manufacturing techniques is highly desirable in ionic polymer-metal composite (IPMC) research. This is caused by the poor selection and limited availability of certain thicknesses of commercial ion exchange membranes. The objective of this study is to determine the feasibility of manufacturing custom ion exchange membranes for IPMC sensors. The manufacturing methods used in this study are extrusion, injection molding, and hot pressing. A commercial membrane from Golden Energy Fuel Cells (GEFC) is used as a comparison. After the membranes are fabricated, certain properties of the …


Modification Of A Draw Bar Type Arena Harrow To Three Point Mounted Type Harrow, Clayton Alan Brown Jun 2014

Modification Of A Draw Bar Type Arena Harrow To Three Point Mounted Type Harrow, Clayton Alan Brown

BioResource and Agricultural Engineering

This senior project will be the design, and construction of a three point hitch to be attached to a draw bar type spike tooth harrow. Currently used by the Cal Poly Rodeo Team to cultivate their arena before performances, and practices.

The attachment will allow the harrow to be pulled in both directions to create different types of soil affects.

Also the fabrications has a minimal budget so the majority of the materials will be scrap material already in position of the rodeo team or donated to the project.


A Scientific Foundation Of Collaborative Engineering, S. C.-Y. Lu, W. Elmaraghy, G. Schuh, R. Wilhelm Jan 2007

A Scientific Foundation Of Collaborative Engineering, S. C.-Y. Lu, W. Elmaraghy, G. Schuh, R. Wilhelm

Department of Mechanical and Materials Engineering: Faculty Publications

Collaborative engineering is the practical application of collaboration sciences to the engineering domain. In today’s highly connected technology-driven economy, the production industry must rely on the best practices of collaborative engineering to stay competitive when designing, manufacturing, and operating complex machines, processes, and systems on a global scale. Despite its importance, collaborative engineering is currently more of a practiced art than a scientific discipline. A better understanding of how engineers should collaborate with all stakeholders to accomplish complex tasks that fulfill our increasing social responsibilities is a grand challenge. However, because we currently lack well-defined sciences of human collaboration, we …


Electronic Commerce Negotiation In A Supply Chain Via Constraint Evaluation, R. Wilhelm, B. Chu, R. Sun Jan 2005

Electronic Commerce Negotiation In A Supply Chain Via Constraint Evaluation, R. Wilhelm, B. Chu, R. Sun

Department of Mechanical and Materials Engineering: Faculty Publications

Negotiation is of critical importance in e-commerce applications where the supply chain is dynamic and reconfiguring. In this research supply chain negotiation problems are addressed as constraint-satisfaction problems. In general each negotiation is handled in the largest scope possible to avoid the suboptimality that can result from many local solutions. This global approach, however, must be balanced with time constraints that apply in e-commerce supply chain execution. In this paper, we describe a new approach for e-commerce supply chain negotiation via constraint evaluation. As well, results from prototype software, distributed across the internet, are discussed. Beyond the general formulation, we …