Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 4 of 4

Full-Text Articles in Mechanical Engineering

Development Of A Rapid Fatigue Life Testing Method For Reliability Assessment Of Flip-Chip Solder Interconnects, Cody Jackson Marbut Dec 2018

Development Of A Rapid Fatigue Life Testing Method For Reliability Assessment Of Flip-Chip Solder Interconnects, Cody Jackson Marbut

Graduate Theses and Dissertations

The underlying physics of failure are critical in assessing the long term reliability of power packages in their intended field applications, yet traditional reliability determination methods are largely inadequate when considering thermomechanical failures. With current reliability determination methods, long test durations, high costs, and a conglomerate of concurrent reliability degrading threat factors make effective understanding of device reliability difficult and expensive. In this work, an alternative reliability testing apparatus and associated protocol was developed to address these concerns; targeting rapid testing times with minimal cost while preserving fatigue life prediction accuracy. Two test stands were fabricated to evaluate device reliability …


Numerical Evaluation Of Energy Release Rate At Material Interfaces For Fatigue Life Predictions, Robert L. Hendrickson May 2018

Numerical Evaluation Of Energy Release Rate At Material Interfaces For Fatigue Life Predictions, Robert L. Hendrickson

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Composite materials are becoming popular in almost all industries. Carbon-fiber and glass-fiber composites are used in aircraft, sports equipment, boats, prosthetics, and wind turbine blades. In all these applications, the composites are subjected to different loads. Loads can take the form of impact or cyclic/fatigue loading, both of which decrease the strength of composites as micro-cracks grow through the composite. Composite laminates are made up of fiber plies (thin layers of fiber) and the fibers are surrounded by a resin like epoxy. It is common for laminates to fail because of delamination growth (plies peeling apart). Small delaminations do not …


A Nanoindentation Study Of The Fatigue Properties Of Al/A-Si Core-Shell Nanostructures, Jason Steck May 2018

A Nanoindentation Study Of The Fatigue Properties Of Al/A-Si Core-Shell Nanostructures, Jason Steck

Mechanical Engineering Undergraduate Honors Theses

Nanostructure-textured surfaces can reduce friction and increase the reliability of micro- and nanoelectromechanical systems (NEMS/MEMS). For MEMS incorporating moving parts, the fatigue properties of nanostructures pose a challenge to their reliability in long-term applications. In this study, the fatigue behavior of hemispherical Al/a-Si core-shell nanostructures (CSNs), bare hemispherical Al nanodots, and a flat Al/a-Si layered thin film have been studied using nanoindentation and nano-scale dynamic mechanical analysis (nano-DMA) techniques. Fatigue testing with nano-DMA shows that the deformation resistance of CSNs persists through 5.0 × 104 loading cycles at estimated contact pressures greater than 15 GPa. When the a-Si shell …


Determination Of Chemical Notch, KChem On Aluminum And Steel When Subjected Under Slow Strain Rate Test In Corrosive Environment, Joshua Teo Lee Kuok Apr 2018

Determination Of Chemical Notch, KChem On Aluminum And Steel When Subjected Under Slow Strain Rate Test In Corrosive Environment, Joshua Teo Lee Kuok

Masters Theses

When designing for any mechanical components or system, the question would arise as to how the material would react to the loads subjected on it? Would the component survive its service load? How would it react to environmental corrosion? To answer these questions, the technique used in this thesis paper is the Slow Strain Rate Test (SSRT) method. Aluminum and steel were chosen as the material to be tested in this paper. Al 7075-T651, and Al 6061-T651 was chosen due to its wide range of application, high strength to weight ratio and ease of machinability. It is highly used in …