Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Effects Of Friction Stir Processing On The Microstructure And Mechanical Properties Of Fusion Welded 304l Stainless Steel, Colin J. Sterling Jun 2004

Effects Of Friction Stir Processing On The Microstructure And Mechanical Properties Of Fusion Welded 304l Stainless Steel, Colin J. Sterling

Theses and Dissertations

Friction stir processing (FSP) has been utilized to locally process regions of arc weldments in 304L stainless steel to improve the microstructure and mechanical performance. The cast microstructure and coarse delta-ferrite has been replaced with a fine-grained wrought microstructure. Furthermore, twins were introduced throughout the friction stir processed region. Although sub-surface sigma and carbides were introduced during FSP, their presence is not expected to adversely affect the resulting mechanical or corrosion properties of friction stir processed 304L arc welds. The resulting mechanical properties of FS processed weldments were also an improvement over as-welded arc welds. FSP resulted in an increase …


Fatigue Of Drill Pipes Used In Horizontal Directional Drilling, Feibai Ma Apr 2004

Fatigue Of Drill Pipes Used In Horizontal Directional Drilling, Feibai Ma

Doctoral Dissertations

Fatigue is the most common cause of mini-HDD drill rod failure. It can occur at stress levels far below the normal operating stress in most drill stem components. Fatigue failures occur because the drill rod, after it has been forced into a curved path, undergoes a cyclic bending stress oscillating from tension to compression in concert with the other stress components caused by torque, thrust, or pullback.

When a rod breaks underground, there is considerable extra cost caused by the delay in “fishing” out the broken rod as well as the cost of replacing the rod. On the other hand, …


Design And Technologies For A Smart Composite Bridge, K. Chandrashekhara, Prakash Kumar, Steve Eugene Watkins, Antonio Nanni Jan 2004

Design And Technologies For A Smart Composite Bridge, K. Chandrashekhara, Prakash Kumar, Steve Eugene Watkins, Antonio Nanni

Mechanical and Aerospace Engineering Faculty Research & Creative Works

An all-composite, smart bridge design for shortspan applications is described. The bridge dimensions are 9.14-m (30-ft.) long and 2.74-m (9-ft.) wide. A modular construction based on assemblies of pultruded fiber-reinforced-polymer (FRP) composite tubes is used to meet American Association of State Highway and Transportation Officials (AASHTO) H20 highway load ratings. The hollow tubes are 76 mm (3 in.) square and are made of carbon/vinyl-ester and glass/vinyl-ester. An extensive experimental study was carried out to obtain and compare properties (stiffness, strength, and failure modes) for a quarter portion of the full-sized bridge. The bridge response was measured for design loading, two-million-cycle …