Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Fatigue

External Link

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Fatigue Performance Improvement By Dynamic Strain Aging And Dynamic Precipitation In Warm Laser Shock Peening Of Aisi 4140 Steel, Chang Ye, Gary Cheng Apr 2015

Fatigue Performance Improvement By Dynamic Strain Aging And Dynamic Precipitation In Warm Laser Shock Peening Of Aisi 4140 Steel, Chang Ye, Gary Cheng

Dr. Chang Ye

Warm laser shock peening (WLSP) integrates the advantages of laser shock peening and thermal-mechanical treatment (TMT) to improve material fatigue performance. Compared to traditional laser shock peening (LSP), warm laser shock peening, i.e. LSP at elevated temperature, leads to better performance in many aspects. WLSP can induce nanoscale precipitations by dynamic precipitation and high density dislocation by dynamic strain aging (DSA), resulting in higher surface strength, which is beneficial for fatigue life improvement. Due to pinning of dislocation structure by nanoscale precipitates, and the pinning of dislocation structure by Cottrell atmosphere, or the DSA effect, stability of the dislocation arrangement …


Mechanism Of Fatigue Performance Enhancement In A Superhard Nanoparticles Integrated Nanocomposites By A Hybrid Manufacturing Technique, Dong Lin, Chang Ye, Yiliang Liao, C. Liu, Gary Cheng Apr 2015

Mechanism Of Fatigue Performance Enhancement In A Superhard Nanoparticles Integrated Nanocomposites By A Hybrid Manufacturing Technique, Dong Lin, Chang Ye, Yiliang Liao, C. Liu, Gary Cheng

Dr. Chang Ye

A hybrid manufacturing process, which contains Laser Sintering (LS) and Laser shock peening (LSP), is introduced to generate iron-TiN nanoparticle nanocomposites. It is a two-step process including LS followed with LSP. Before LS, TiN nanoparticles mixed with iron powders are coated on samples surface. After LS, TiN nanoparticles are embedded into iron matrix to strengthen materials. Then LSP is performed to introduce work hardening and compressive residual stress. The existed nanoparticles increase the dislocation density and also help to pin the dislocation movement. Better residual stress stability under thermal annealing can be obtained by better dislocation movement stabilization, which is …


Fatigue Life Prediction For Large-Diameter Elastically Constrained Ball Bearings, Jerzy Sawicki, Samuel Johansson, John Rumbarger, Ronald Sharpless Nov 2012

Fatigue Life Prediction For Large-Diameter Elastically Constrained Ball Bearings, Jerzy Sawicki, Samuel Johansson, John Rumbarger, Ronald Sharpless

Jerzy T. Sawicki

The application of large-diameter bearing rings and the thereof inherited low stiffness make them susceptible to local distortions caused by their surrounding structures, which are often under heavy loads. The standard accepted design criteria for these bearings are based on the estimation of the internal load distribution of the bearing, under the assumption of rigid circular and flat supporting structures, that keep the bearing inner and outer races in circular, flat, i.e., not deformed shapes. However, in the presence of structural distortions, the element load distribution can be severely altered and cannot be predicted via the standard design criteria. Therefore, …