Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Mechanical Engineering

Fatigue And Fracture Of Electron Beam Melting Ti-6al-4v, William A. Grell Aug 2023

Fatigue And Fracture Of Electron Beam Melting Ti-6al-4v, William A. Grell

Electronic Theses and Dissertations

For applications in the aerospace field, selection of materials for a given design requires an understanding of critical properties, like fatigue and fracture, in addition to static mechanical and physical properties. With the ongoing advancements in metallic additive manufacturing techniques and the interest in applying the process to aerospace applications, there is a clear need to fully characterize properties. Arguably, the most attractive alloy for applications in aerospace is the Ti-6Al-4V alloy. The current dissertation examines the mechanical properties of the alloy, made by the Electron Beam Melting (EBM) Powder Bed Fusion (PBF) method. As illustrated in this work, the …


Freespan Analysis For Subsea Pipeline Integrity Management Strategy, Nurul Hadi, Muhammad Helmi, Edo Cathaputra, Dedi Priadi, Donanta Dhaneswara Jan 2023

Freespan Analysis For Subsea Pipeline Integrity Management Strategy, Nurul Hadi, Muhammad Helmi, Edo Cathaputra, Dedi Priadi, Donanta Dhaneswara

Journal of Materials Exploration and Findings

Abstract. Over a rough seabed or on seabed subject to scour, freespans can occur when contact between a subsea pipeline and the seabed is lost over an acceptable distance. When this exceeds the allowable freespan length, design stresses can be exceeded, and a vortex induced vibration (VIV) response can be initiated, resulting in the risk of fatigue failure. If this is not predicted and controlled properly, it will affect pipeline integrity, leading to expensive rectification and intervention work. Freespan analysis consisted primarily of a screening check in which the as-found freespans from Remotely Operated Vehicle (ROV) or multibeam Side …


Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo Dec 2021

Assessing Mechanical Performance Of Dissimilar Steel Systems Made Via Wire-Arc Additive Manufacturing, Obed Daniel Acevedo

Masters Theses

Hot stamping is part of a specific type of metalworking procedure widely used in the automotive industry. This research seeks to help make hot stamp tooling component production more cost-effective by using large-scale additive manufacturing. Additive manufacturing can produce dissimilar steel components that can be more cost-effective and time-efficient and allow for complex geometries to be made. A dissimilar steel system consisting of 410 martensitic stainless steel and AWS ER70S-6 mild steel is proposed to make hot stamps, making them more cost-efficient. However, the material interface's mechanical behavior in 410SS-mild steel additively manufactured material systems is not well understood. This …


Selective Laser Melting 17-4 Ph Stainless Steel And The Effect Of Varied Thermal Treatments On Fatigue Behavior., Sean Daniel Dobson May 2020

Selective Laser Melting 17-4 Ph Stainless Steel And The Effect Of Varied Thermal Treatments On Fatigue Behavior., Sean Daniel Dobson

Electronic Theses and Dissertations

Fatigue failure is the leading source of loss in industry. In order for new means of manufacturing to move towards mainstream use a complete understanding of material and mechanical behavior must be gained. This endeavor seeks to aide in that task by observing the fatigue behavior of selective laser melting (SLM) additive manufacturing (AM) specimens and the effect of differing thermal treatment conditions for an optimized AM process. Stainless steel 17-4 PH specimens were fabricated using SLM AM and thermally treated to three conditions: as-built, solutionized and hardened, and direct hardened. These specimens were characterized for material (powder quality, density, …


Application Of Survival Analysis Techniques To Probabilistic Assessment Of Fatigue In Steel Bridges, Azam Nabizadehdarabi Dec 2019

Application Of Survival Analysis Techniques To Probabilistic Assessment Of Fatigue In Steel Bridges, Azam Nabizadehdarabi

Theses and Dissertations

The fatigue of engineering materials under repetitive loading is a significant issue affecting the design and durability of components and systems in a variety of engineering-related applications including civil, mechanical, aerospace, automotive, and electronics. Many factors can affect the service life of a component or system under repetitive loading, such as the type of structure, loading, connection details, stress state, peak stress or stress range, surface condition, temperature, and environmental exposure. Currently, there is no comprehensive probabilistic approach that can systematically address all the factors that contribute to fatigue on a single mathematical platform. However, advanced analysis techniques developed for …


In Situ Measurement Of Fatigue Induced Crack Growth In Inconel 718 Using Direct Current Potential Drop Method, Joel C. Lindsay Jan 2019

In Situ Measurement Of Fatigue Induced Crack Growth In Inconel 718 Using Direct Current Potential Drop Method, Joel C. Lindsay

Graduate Theses, Dissertations, and Problem Reports

With recent advances in air breathable engines comes more extreme temperature environments that engine components must tolerate. During the design of these engines, it is necessary to understand how material fatigue failures occur at these new, higher operating temperatures. In providing understanding, the following fundamental study focuses on the statistical nature of crack jumps (changes in crack length over time) during fatigue in a polycrystalline nickel-based superalloy, Inconel 718 (IN718). In situ measurement of the crack length at several loading conditions were conducted using a direct current potential drop (DCPD) measurement method. Experimental data was collected at six different fatigue …


Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang May 2017

Peridynamic Models For Fatigue And Fracture In Isotropic And In Polycrystalline Materials, Guanfeng Zhang

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

To improve design and reliability, extensive efforts has been devoted to understanding damage and failure of materials and structures using numerical simulation, as a complement of theory and experiment. In this thesis, peridynamics is adopted to study fatigue and dynamic failure problems.

Fatigue is a major failure mode in engineering structures. Predicting fracture/failure under cyclic loading is a challenging problem. Classical model cannot directly be applied to problems with discontinuities. A peridynamic model is adopted in this work because of important advantages of peridynamics in allowing autonomous crack initiation and propagation. A recently proposed peridynamic fatigue crack model is considered …


Properties That Characterize The Material X46cr13 Steel, Josip Brnic, Sanjin Krscanski, Marino Brcic, Jitai Niu Oct 2016

Properties That Characterize The Material X46cr13 Steel, Josip Brnic, Sanjin Krscanski, Marino Brcic, Jitai Niu

The 8th International Conference on Physical and Numerical Simulation of Materials Processing

No abstract provided.


Analysis Of Fatigue Crack Propagation In Welded Steels, Roberto Angelo Demarte Oct 2016

Analysis Of Fatigue Crack Propagation In Welded Steels, Roberto Angelo Demarte

Master's Theses (2009 -)

This thesis presents the study of fatigue crack propagation in a low carbon steel (ASTM A36) and two different weld metals (AWS A5.18 and AWS A5.28). Fatigue crack propagation data for each weld wire is of interest because of its use for predicting and analyzing service failures. Fatigue crack growth test specimens were developed and fabricated for the low carbon steel base metal and for each weld wire. Weld specimens were stress relieved prior to fatigue testing. Specimens were tested on a closed-loop servo hydraulic test machine at two different load ratios. Fatigue test data was collected to characterize both …


Equi-Biaxial Fatigue Testing Of Epm Utilising Bubble Inflation, Mark Johnson, Niall Murphy, Ray Ekins, John Hanley, Stephen Jerrams Jan 2016

Equi-Biaxial Fatigue Testing Of Epm Utilising Bubble Inflation, Mark Johnson, Niall Murphy, Ray Ekins, John Hanley, Stephen Jerrams

Articles

This paper describes an equi-biaxial tension fatigue test system which utilises the bubble inflation method to subject elastomers to equi-biaxial fatigue loading between user-defined limits of pressure, volume, stretch ratio or stress. The test system integrates a hydraulic inflation system, a high speed vision system and a control system. The high-speed vision system allows the stretch ratio and stress acting on the test specimen to be evaluated in real-time during testing. This in turn allows either stretch ratio or stress to be used as a direct control limit. In this research, constant maximum engineering stress control tests have been carried …


Prediction Of Tribological Behavior Of Candidate Materials For Rotor Seals, John W. Franzino, Will F. Michul Jun 2014

Prediction Of Tribological Behavior Of Candidate Materials For Rotor Seals, John W. Franzino, Will F. Michul

Materials Engineering

To reduce high costs associated with manufacturing and testing materials for rotor seals, a procedure needs to be developed to quickly and accurately test candidate materials as they are released. The test should reduce the amount of fabrication required and model working conditions in order to accurately assess the tribological behavior of candidate materials. A possible solution was examined that utilized a rig meant to model operational stresses and wear. Compression modulus data was then taken in order to quantify the accumulation of damage due to microcracking, the primary mode of failure, through a damage index parameter. Testing results concluded …


Development And Validation Of Probabilistic Fatigue Models Containing Out-Life Suspensions, Noel S. Murray Jan 2012

Development And Validation Of Probabilistic Fatigue Models Containing Out-Life Suspensions, Noel S. Murray

Electronic Theses and Dissertations

Author's abstract: In the area of reliability engineering it is necessary to be confident that a component or system of components will not fail under use for safety and cost reasons. One major mechanism of failure to a mechanical component is fatigue. This is the repetitious motion of loading and unloading of the material, typically below the ultimate tensile strength of the material, which ultimately leads to a catastrophic failure. To ensure this does not happen, engineers design components based on tests to determine the life of these components. These tests are typically conducted on a bench type tester in …


Fracture Toughness, Crack-Growth-Rate And Creep Studies Of Alloy 276, Joydepp Pal Jan 2009

Fracture Toughness, Crack-Growth-Rate And Creep Studies Of Alloy 276, Joydepp Pal

UNLV Theses, Dissertations, Professional Papers, and Capstones

Austenitic nickel-base Alloy 276 had been proposed to be a candidate structural material within the purview of the nuclear hydrogen initiative program. A mechanistic understanding of high temperature tensile deformation of this alloy has already been presented in an earlier investigation. The current investigation has been focused on the evaluation of crack-growth behavior, fracture toughness, stress-corrosion-cracking and creep deformation of this alloy as functions of different metallurgical and mechanical variables. The results of crack-growth study under cyclic loading indicate that this alloy exhibited greater cracking tendency with increasing temperature at a constant load ratio (R). However, the effect of temperature …