Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Energy

University of South Carolina

Faculty Publications

Publication Year

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Proton Transfer In Molten Lithium Carbonate: Mechanism And Kinetics By Density Functional Theory Calculations, Xueling Lei, Kevin Huang, Changyong Qin Aug 2017

Proton Transfer In Molten Lithium Carbonate: Mechanism And Kinetics By Density Functional Theory Calculations, Xueling Lei, Kevin Huang, Changyong Qin

Faculty Publications

Using static and dynamic density functional theory (DFT) methods with a cluster model of [(Li2CO3)8H]+, the mechanism and kinetics of proton transfer in lithium molten carbonate (MC) were investigated. The migration of proton prefers an inter-carbonate pathway with an energy barrier of 8.0 kcal/mol at the B3LYP/6-31 G(d,p) level, which is in good agreement with the value of 7.6 kcal/mol and 7.5 kcal/mol from experiment and FPMD simulation, respectively. At transition state (TS), a linkage of O–H–O involving O 2p and H 1 s orbitals is formed between two carbonate ions. The calculated trajectory of H indicates that proton has …


Performance Of Solid Oxide Iron-Air Battery Operated At 550°C, Xuan Zhao, Yunhui Gong, Xue Li, Nansheng Xu, Kevin Huang May 2013

Performance Of Solid Oxide Iron-Air Battery Operated At 550°C, Xuan Zhao, Yunhui Gong, Xue Li, Nansheng Xu, Kevin Huang

Faculty Publications

“Metal-air” batteries have garnered much attention in recent years due to their high intrinsic specific energy and use of inexhaustible and storage-free oxygen source -air- for the “metal-oxygen” reaction. In this study, we report theperformance of a new type of all solid-state “iron-air” battery operated at 550°C. The results show that CeO2 nanoparticles incorporated into the Fe-Fe3O4 redox-couple can improve the specific energy (Wh/kg) and round trip efficiency by 15% and 29%, respectively, over the baseline Fe-Fe3O4 battery. Use of supported Fe-Fe3O4 nanoparticles as the redox couple can increase the …