Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Investigation Of 2195 And 2219 Post Weld Heat Treatments For Additive Friction Stir Lap Welds, Matthew Champagne Dec 2017

Investigation Of 2195 And 2219 Post Weld Heat Treatments For Additive Friction Stir Lap Welds, Matthew Champagne

University of New Orleans Theses and Dissertations

To evaluate potential uses for friction stir welding in additive manufacturing, two separate parts were fabricated, one of 2195-T84 and the other 2219-T87, utilizing fixed pin techniques and additive lap welds. The parts were cut into samples, artificially aged and subjected to Rockwell hardness (HRB), Vickers hardness, micrographic photography, and metallographic imaging on both pre- and post- heat treatment. Additionally, tensile testing was performed on the heat-treated samples. A comparisons of test results showed a minimal increase in the yield strength of the 2195-T84 samples compared to as-welded tensile results obtained from a previous project. The ultimate tensile strength was …


Additive Manufacturing Of High Entropy Alloys -- A Review, Wenyuan Cui, Xinchang Zhang, Frank W. Liou Aug 2017

Additive Manufacturing Of High Entropy Alloys -- A Review, Wenyuan Cui, Xinchang Zhang, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

High-entropy alloys have attracted increasingly interest due to their unique compositions, microstructures and mechanical properties. Additive manufacturing has been recognized as a promising technology to fabricate the high-entropy alloys in the recent years. The purpose of this paper is to review the current research progress in high-entropy alloys by additive manufacturing process. It will first highlight the important theory of the high-entropy alloys. The next aspect is to summarize current additive manufacturing methods applied for the high entropy alloys. At last, the correlation between the microstructures and the mechanical properties of the high-entropy alloys will be examined and discussed.


Effect Of Composition And Build Direction On Additively Manufactured Hastelloy X Alloys, Justin A. Spitzer, Jeffrey T. Schloetter, Sarah Zerga Jun 2017

Effect Of Composition And Build Direction On Additively Manufactured Hastelloy X Alloys, Justin A. Spitzer, Jeffrey T. Schloetter, Sarah Zerga

Materials Engineering

Microcracking has caused premature failure and reduction in properties in additively manufactured (AM) Hastelloy X. The purpose of this research is to meet or exceed the mechanical properties of wrought Hastelloy X by modifying the composition and build direction of Hastelloy X manufactured using Direct Metal Deposition (DMD). Tensile testing, scanning electron microscopy (SEM), and metallography were performed on the samples. ANOVA was used to analyze the dependence that the properties had on build direction and composition. The nominal composition wrought samples had a yield strength of 310.1 MPa and a 60.79% Elongation. Alloy P60-X18 in a horizontal build had …


Error Mapping Of Build Volume In Selective Laser Melting, Ninad Kulkarni Jan 2017

Error Mapping Of Build Volume In Selective Laser Melting, Ninad Kulkarni

Masters Theses

“Selective laser melting is one of the commonly used additive manufacturing processes employed for production of functional part. Therefore, quality aspects such as dimensional accuracy have become a point of great interest. Like all of the other additive manufacturing processes selective laser melting process suffers from the issue if having wide range of process parameters making the process control a complex task. Additionally, issues specific to the selective laser melting process such as position dependency of accuracy of the part, makes it difficult to predict the resulting dimensional inconsistencies in the part manufactured by this processes. This research is an …


Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi Jan 2017

Shape Memory Behavior Of Dense And Porous Niti Alloys Fabricated By Selective Laser Melting, Soheil Saedi

Theses and Dissertations--Mechanical Engineering

Selective Laser Melting (SLM) of Additive Manufacturing is an attractive fabrication method that employs CAD data to selectively melt the metal powder layer by layer via a laser beam and produce a 3D part. This method not only opens a new window in overcoming traditional NiTi fabrication problems but also for producing porous or complex shaped structures. The combination of SLM fabrication advantages with the unique properties of NiTi alloys, such as shape memory effect, superelasticity, high ductility, work output, corrosion, biocompatibility, etc. makes SLM NiTi alloys extremely promising for numerous applications.

The SLM process parameters such as laser power, …