Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2023

Aerospace Engineering

Institution
Keyword
Publication
Publication Type
File Type

Articles 1 - 30 of 125

Full-Text Articles in Mechanical Engineering

Depressurization Characteristics Of Steam-Based Reciprocating Vacuum Pump, Hongling Deng Dec 2023

Depressurization Characteristics Of Steam-Based Reciprocating Vacuum Pump, Hongling Deng

Dissertations

This dissertation introduces a novel vacuum technology that leverages low-pressure saturated steam and cooling-controlled condensation, offering an efficient way to utilize low-grade thermal energy sources like waste heat, steam, or solar energy. At the heart of this technology is a unique duo-chamber vacuum pump system, featuring a reciprocating piston and a heat-conductive wall, designed to generate a vacuum through steam-condensation and cooling processes.

The core of this research lies in developing and validating mechanistic models for the steam-condensation depressurization process, a complex phenomenon involving phase change and transport mechanisms. Prior to this work, these mechanisms were not sufficiently modeled or …


Indicators Affecting Passenger Service Processes And Their Scientific Interpretation, Maxliyoxon Madaminova Maxamatjon Qizi, Saidazim Amanullayevich Ganihodjayev Dec 2023

Indicators Affecting Passenger Service Processes And Their Scientific Interpretation, Maxliyoxon Madaminova Maxamatjon Qizi, Saidazim Amanullayevich Ganihodjayev

Technical science and innovation

Many traffic flow parameters affect the performance of the road network at high voltage. These are low vehicle speeds, high vehicle distances relative to road capacity, and density per unit time (lane occupancy). In turn, a number of factors affect the decrease in traffic speed: the presence of slow-moving vehicles in the stream; pedestrians crossing the road irregularly; increase in traffic flow, etc. The issues of public transportation depend on many factors, each of which requires a separate approach and a complex solution. In large cities around the world, the quality indicators of public transport services, including the issues of …


Multi-Mode Regulation Of The Drying Process Of Industrial Gas, Isamidin Xakimovich Sidikov Pr, Nashvandova Gulruxsor Murot Qizi Phd Dec 2023

Multi-Mode Regulation Of The Drying Process Of Industrial Gas, Isamidin Xakimovich Sidikov Pr, Nashvandova Gulruxsor Murot Qizi Phd

Technical science and innovation

Currently, much attention is paid to the issue of energy efficiency of gas processing enterprises. The continuous growth of world prices for energy resources requires constant improvement of the management system, providing the most optimal conditions for the flow of technological processes. A conceptual model of the heat-mass transfer process occurring in the absorber as an object of research has been developed, which characterizes the relationship of the variables involved in the drying process of natural gas, control, measurable and immeasurable, as well as controlled parameters have been selected, which are used to develop and study a mathematical model of …


The Interaction Of The Cotton Piece With The Piles Of The Scrabble Cotton Drum, Fazliddin Egamberdiev, Ilkhom Abbazov, Oybek Kholmuratov, Rashid Kaldybaev Dec 2023

The Interaction Of The Cotton Piece With The Piles Of The Scrabble Cotton Drum, Fazliddin Egamberdiev, Ilkhom Abbazov, Oybek Kholmuratov, Rashid Kaldybaev

Technical science and innovation

This article presents the results of an analytical study of the process of loosening and cleaning raw cotton from small debris by pileging working bodies of purifiers, on the basis of which directions for further research were chosen to optimize the parameters of the developed pile drum with spherical piles and rubber strips. Cotton entering production contains impurities. The processes of loosening and cleaning the fiber shreds are key in the initial stages of ginning, as they prepare the raw cotton for ginning and directly affect the reliability, productivity of these processes and the quality of the resulting fiber. Weed …


An Experimental Investigation Of The New Vibration Viscometer, Jamshidbek Ulugbek Ugli Shamuratov Dec 2023

An Experimental Investigation Of The New Vibration Viscometer, Jamshidbek Ulugbek Ugli Shamuratov

Technical science and innovation

The characteristics of the new oscillating-plate viscometer have been investigated experimentally. The results obtained are as follows: the resonant frequency of plate oscillation decreases with increasing viscosity; the apparatus constant 𝐾 determined experimentally includes the end and slip effects; the dimensions of the plate should be determined by referring to empirical relations between 𝜌𝜇 and Λ(≡{(𝐸𝑎𝐸)−1}𝑛) for various dimensions of the plate; where 𝜌 is the density, 𝜇 is the viscosity; 𝐸𝑎 the resonant amplitude of plate in the air; E the amplitude of plate in a liquid, and 𝑛 a constant. If the distance between the plate and the …


Adaptation Algorithm For Self-Tuning Of Parameters Of Models Of Multi-Stage Flotation Processes, Nilufar Sharifzhanova, Maksadhan Yakubov, Francesco Gregoretti Dec 2023

Adaptation Algorithm For Self-Tuning Of Parameters Of Models Of Multi-Stage Flotation Processes, Nilufar Sharifzhanova, Maksadhan Yakubov, Francesco Gregoretti

Technical science and innovation

Modern methods for solving problems of planning the execution of batches of tasks in multi-stage systems are characterized by the presence of restrictions on their dimensionality, the impossibility of guaranteed obtaining better results in comparison with fixed packages for different values of the input parameters of the problem. In the article, the author solved the problem of optimizing the composition of job packages running in multi-stage systems using the branch and bound method. Research has been carried out on various ways to form package execution orders tasks in multi-stage systems (heuristic rules for ordering packages tasks in the sequence of …


Aerodynamic Dimpling For The Nose Cone Of A High-Power Competition Rocket, Graham Geoffrey Monroe Dec 2023

Aerodynamic Dimpling For The Nose Cone Of A High-Power Competition Rocket, Graham Geoffrey Monroe

Mechanical Engineering ETDs

This thesis investigates nose cone dimpling for the reduction of the aerodynamic drag of a Level 3 High-Power amateur rocket. Two rocket launches were conducted. The first used a COTS nose cone with a smooth surface. A dimple distribution was created according to dimensions calculated by Sandia National Laboratories’ proprietary Right- Size Dimple Evaluator. A dimpled nose cone, designed with geometry matching the COTS component, was 3D printed. Axial acceleration and barometric pressure data, recorded by an onboard flight computer, were used to calculate and plot the drag coefficient as a function of the Reynolds number for the smooth and …


Experimental And Modelling Of Lightning Damage To Carbon Fibre-Reinforced Composites Under Swept Stroke, Chengzhao Kuang, Kunkun Fu, Juhyeong Lee, Huixin Zhu, Qizhen Shi, Xiaoyu Cui Dec 2023

Experimental And Modelling Of Lightning Damage To Carbon Fibre-Reinforced Composites Under Swept Stroke, Chengzhao Kuang, Kunkun Fu, Juhyeong Lee, Huixin Zhu, Qizhen Shi, Xiaoyu Cui

Mechanical and Aerospace Engineering Faculty Publications

Lightning swept stroke creates multiple lightning attachments along an aircraft in flight. This introduces distinct structural damage compared to that from a single-point lightning current injection test in laboratory. This study presents both experimental and numerical studies on lightning damage in carbon fibre-reinforced polymer (CFRP) composites under swept stroke. Coupled electrical–thermal finite element (FE) models were proposed to predict lightning damage to CFRP composites under single-point current injection and swept stroke, respectively. A lightning swept stroke testing method was proposed by embedding a copper wire inside the composites to simulate multiple lightning attachments on the composites. The FE-predicted damage from …


An Optimization Procedure To Design Nozzle Contours For Hypersonic Wind Tunnels, Omar Antonio Dominguez Dec 2023

An Optimization Procedure To Design Nozzle Contours For Hypersonic Wind Tunnels, Omar Antonio Dominguez

Open Access Theses & Dissertations

Supersonic wind tunnels allow scientists and researchers to evaluate and analyze the behaviors of objects under real-life conditions when subjected to supersonic speeds. One of the main complexities when building a wind tunnel is the design of the convergent-divergent nozzle that is used to produce high-speed and high-quality flows. To achieve supersonic speeds, this nozzle adopts a specialized approach that incorporates the complexities of flow compressibility. The compressible effect is accurately evaluated using isentropic relations, allowing for precise determination of stagnation pressure and temperature, and static pressure and temperature relevant to the desired Mach number. Isentropic equations used to define …


Husker Motorsports Active Drag Reduction System, Creighton Hughes, Evan Killian, Micah Busboom, Aj Johnson, Jude Steffen Dec 2023

Husker Motorsports Active Drag Reduction System, Creighton Hughes, Evan Killian, Micah Busboom, Aj Johnson, Jude Steffen

Honors Theses

Formula SAE is a multifaceted competition that involves student teams designing and competing with an open-wheel style race car. There are 5 different dynamic events included in the competition. Each event requires a unique aerodynamic setup to have the best performance possible. This design project focuses on a drag reduction system (DRS) that will improve aerodynamic performance, resulting in faster lap times and increased competitiveness. Key features include a direct electronic actuation mechanism that will allow the rear wing to be adjusted during a race. The benefits of the DRS system, include increased speed, improved handling, and greater fuel efficiency …


Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams Dec 2023

Cfrp Delamination Density Propagation Analysis By Magnetostriction Theory, Brandon Eugene Williams

All Dissertations

While Carbon Fiber Reinforced Polymers (CFRPs) have exceptional mechanical properties concerning their overall weight, their failure profile in demanding high-stress environments raises reliability concerns in structural applications. Two crucial limiting factors in CFRP reliability are low-strain material degradation and low fracture toughness. Due to CFRP’s low strain degradation characteristics, a wide variety of interlaminar damage can be sustained without any appreciable change to the physical structure itself. This damage suffered by the energy transfer from high- stress levels appears in the form of microporosity, crazes, microcracks, and delamination in the matrix material before any severe laminate damage is observed. This …


Effects Of Simultaneous Co2 Addition To The Fuel And Oxidizer Streams On Soot Formation In Co-Flow Diffusion Ethylene Flame, Yu Yang, Shu Zheng, Yuzhen He, Hao Liu, Ran Sui, Qiang Lu Dec 2023

Effects Of Simultaneous Co2 Addition To The Fuel And Oxidizer Streams On Soot Formation In Co-Flow Diffusion Ethylene Flame, Yu Yang, Shu Zheng, Yuzhen He, Hao Liu, Ran Sui, Qiang Lu

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Soot formation in a co-flow diffusion ethylene flame with the addition of CO2 to the fuel (the CO2-F), oxidizer (the CO2-O), and fuel/oxidizer (the CO2-F/O) streams was numerically and experimentally investigated in this study. The effects of different CO2 addition ways on soot inception, soot condensation, H-abstraction-C2H2-addition (HACA) and oxidation by O2/OH processes, were quantitatively analyzed by introducing the integrated reaction rates over the whole computational domain. The simulated and experimental results showed that the CO2-F/O was the most effective in inhibiting soot formation …


The Role Of Atomic Layer Deposited Coatings On Lithium-Ion Transport: A Comprehensive Study, Yufang He, Hiep Pham, Xinhua Liang, Jonghyun Park Dec 2023

The Role Of Atomic Layer Deposited Coatings On Lithium-Ion Transport: A Comprehensive Study, Yufang He, Hiep Pham, Xinhua Liang, Jonghyun Park

Mechanical and Aerospace Engineering Faculty Research & Creative Works

The Use of Ultrathin Film Coatings Prepared through Atomic Layer Deposition (ALD) Has Become Widespread for Improving Lithium-Ion Diffusivity of Active Particles, Which Plays a Crucial Role in Determining the Rate Capability of Lithium-Ion Batteries (LIBs). in This Study, the Impact of ALD Coating Thickness on Ionic Diffusivity in CeO2-Coated LiMn2O4 (LMO) Cathode Particles is Comprehensively Investigated through First-Principles Calculations by Focusing on the Trade-Offs between the Physical Properties of the Film and its Impact on the Diffusivity of Ions. Our Findings Indicate that Several Physical Factors Affect the Diffusivity of the Coating, Including the Crystal-Amorphous Structure that Depends on …


Gpu Based Monte Carlo Estimation Of Eddy Current Losses In Electromagnetic Coil-Core System, Adwaith Ravichandran Dec 2023

Gpu Based Monte Carlo Estimation Of Eddy Current Losses In Electromagnetic Coil-Core System, Adwaith Ravichandran

Theses and Dissertations

A novel parallelizable probabilistic approach to model eddy currents in AC electromagnets is presented in this research. Consequently, power loss associated with the formation of these eddy currents is estimated and validated using experimental data. Furthermore, predicting the effect of ferromagnetic alternating field enhancement on power loss in the source excitation winding has been an active area of research. Unlike a stationary field, an alternating sinusoidal field diffuses partially into the ferromagnetic material leading to a predictably sub-optimal field enhancement. To model these physics, finite element techniques employ nonlinear iterative solvers which are time consuming. A novel method is developed …


Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt Dec 2023

Controlled Manipulation And Transport By Microswimmers In Stokes Flows, Jake Buzhardt

All Dissertations

Remotely actuated microscale swimming robots have the potential to revolutionize many aspects of biomedicine. However, for the longterm goals of this field of research to be achievable, it is necessary to develop modelling, simulation, and control strategies which effectively and efficiently account for not only the motion of individual swimmers, but also the complex interactions of such swimmers with their environment including other nearby swimmers, boundaries, other cargo and passive particles, and the fluid medium itself. The aim of this thesis is to study these problems in simulation from the perspective of controls and dynamical systems, with a particular focus …


Safe Navigation Of Quadruped Robots Using Density Functions, Andrew Zheng Dec 2023

Safe Navigation Of Quadruped Robots Using Density Functions, Andrew Zheng

All Theses

Safe navigation of mission-critical systems is of utmost importance in many modern autonomous applications. Over the past decades, the approach to the problem has consisted of using probabilistic methods, such as sample-based planners, to generate feasible, safe solutions to the navigation problem. However, these methods use iterative safety checks to guarantee the safety of the system, which can become quite complex. The navigation problem can also be solved in feedback form using potential field methods. Navigation function, a class of potential field methods, is an analytical control design to give almost everywhere convergence properties, but under certain topological constraints and …


Kwad - Ksu All Weather Autonomous Drone, Nick Farinacci, Sebastian Gomez, Stewart Baker, Ed Sheridan Nov 2023

Kwad - Ksu All Weather Autonomous Drone, Nick Farinacci, Sebastian Gomez, Stewart Baker, Ed Sheridan

Symposium of Student Scholars

"KWAD" or "KSU all-Weather Autonomous Drone" project was sponsored by Ultool, LLC to the KSU Research and Service Foundation to create a lightweight drone capable of capturing HD video during all-weather operations. The conditions of all-weather operation include rainfall of one inch per hour and wind speeds of up to twenty miles per hour. In addition, a global minimum structural safety factor of two is required to ensure the system's integrity in extreme weather conditions. Potential mission profiles include autonomous aerial delivery, topological mapping in high moisture areas, security surveillance, search and rescue operations, emergency transportation of medical supplies, and …


Molecular Dynamics Simulations Of The Spontaneous Deformation And Auxetics Behavior During Tensile Test Of A Nematic Liquid Crystal Elastomer Model, Haoran Wang, Nanang Mahardika Nov 2023

Molecular Dynamics Simulations Of The Spontaneous Deformation And Auxetics Behavior During Tensile Test Of A Nematic Liquid Crystal Elastomer Model, Haoran Wang, Nanang Mahardika

Browse all Datasets

Nematic liquid crystal elastomers (LCEs) are advanced materials known for their shape-changing capability in response to external stimuli such as heat, light and electromagnetic fields. This makes them excellent candidates for applications like soft robotics and energy harvesting. While studies on their physical behavior have shed light on the complex nonlinear mechanics of LCEs, investigations through all-atom molecular dynamics (MD) simulations remain an underutilized avenue compared to experimental and theoretical analyses. This limited use is primarily due to the lack of well-established frameworks for conducting high-fidelity atomistic simulations of LCEs. To bridge this gap, we introduce an all-atom MD simulation …


Steady And Transient Study Of Conjugate Heat Transfer In Regenerative Cooled Nozzle, Khaled Bensayah, Khadidja Kamri Nov 2023

Steady And Transient Study Of Conjugate Heat Transfer In Regenerative Cooled Nozzle, Khaled Bensayah, Khadidja Kamri

Emirates Journal for Engineering Research

The Heat transfer is one of the most serious challenges that exist in a supersonic nozzle flow. The combustion chamber wall and the nozzle are exposed to high-temperature gases during combustion and gas expansion, which can eventually lead to structural failure. This paper reports a computational study of steady and transient conjugate heat transfer in regenerative water cooled nozzle. Numerical computation solved Reynolds-averaged equations based on RSM-Omega turbulence model coupling with solid-phase heat conduction equation and with coolant-phase. The effect of four inlet cooled approach length 0 inch, 6 inch, 12 inch and 18 inch are studied and validated against …


Experimental Investigation Of The Vortex-Induced Vibration Response Of A Flexibly-Mounted Rigid Cylinder In The Shear-Thinning And Inertial-Viscoelastic Flow Regimes, Pieter Boersma Nov 2023

Experimental Investigation Of The Vortex-Induced Vibration Response Of A Flexibly-Mounted Rigid Cylinder In The Shear-Thinning And Inertial-Viscoelastic Flow Regimes, Pieter Boersma

Doctoral Dissertations

Flexible or flexibly-mounted structures with bluff cross-sections in flow can shed vortices at frequencies that increase with increasing flow velocity. When this shedding frequency is equal to the structure's natural frequency, the structure can oscillate. This is called vortex-induced vibrations (VIV). VIV is present in multiple fluid-structure interaction (FSI) systems which can be found in industrial, medical, and engineering applications. These oscillations can be desirable or undesirable, so understanding the physics behind this phenomenon is important. This work seeks to investigate experimentally the VIV response in the inertial-viscoelastic regime where fluid inertia and elasticity influence the system. The subcritical Newtonian …


Comparative Evaluation Of Investigation Methods For Estimating The Load-Dependent State Of Charge And End Of Discharge Of A Multirotor Uav Battery, Hanna Dibbern, Morten Roßberg, Claudia Werner Nov 2023

Comparative Evaluation Of Investigation Methods For Estimating The Load-Dependent State Of Charge And End Of Discharge Of A Multirotor Uav Battery, Hanna Dibbern, Morten Roßberg, Claudia Werner

Journal of Aviation Technology and Engineering

As the scope of multirotor unmanned aerial vehicle (UAV) applications increases, more attention is being paid to UAV energy requirements, which vary depending on the mission profile. To obtain accurate information about the UAV battery during flight, the idea of a digital twin including a battery state estimation model is promising. For battery state estimation, a Kalman filter combination is the preferred approach in the literature. Comparing different Kalman filters, the unscented Kalman filter has a more accurate estimation for nonlinear systems compared to the extended Kalman filter. In the application of UAV flight with load-dependent flight missions, the comparison …


Searching For Unknown Material Properties For Am Simulations, Aaron Flood, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou Nov 2023

Searching For Unknown Material Properties For Am Simulations, Aaron Flood, Rachel Boillat, Sriram Praneeth Isanaka, Frank W. Liou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Additive manufacturing (AM) simulations are effective for materials that are well characterized and published; however, for newer or proprietary materials, they cannot provide accurate results due to the lack of knowledge of the material properties. This work demonstrates the process of the application of mathematical search algorithms to develop an optimized material dataset which results in accurate simulations for the laser directed energy deposition (DED) process. This was performed by first using a well-characterized material, Ti-64, to show the error in the predicted melt pool was accurate, and the error was found to be less than two resolution steps. Then, …


Towards A Virtual Test Framework To Predict Residual Compressive Strength After Lightning Strikes, Scott L.J. Millen, Xiaodong Xu, Juhyeong Lee, Suparno Mukhopadhyay, Michael R. Wisnom, Adrian Murphy Nov 2023

Towards A Virtual Test Framework To Predict Residual Compressive Strength After Lightning Strikes, Scott L.J. Millen, Xiaodong Xu, Juhyeong Lee, Suparno Mukhopadhyay, Michael R. Wisnom, Adrian Murphy

Mechanical and Aerospace Engineering Faculty Publications

A novel integrated modelling framework is proposed as a set of coupled virtual tests to predict the residual compressive strength of carbon/epoxy composites after a lightning strike. Sequentially-coupled thermal-electric and thermo-mechanical models were combined with Compression After Lightning Strike (CAL) analyses, considering both thermal and mechanical lightning strike damage. The predicted lightning damage was validated using experimental images and X-ray Computed Tomography. Delamination and ply degradation information were mapped to a compression model, with a maximum stress criterion, using python scripts. Experimental data, in which artificial lightning strike and compression testing were performed, was used to assess the predictive capabilities …


On Quantifying Uncertainty In Lightning Strike Damage Of Composite Laminates: A Hybrid Stochastic Framework Of Coupled Transient Thermal-Electrical Simulations, R. S. Chahar, J. Lee, T. Mukhopadhyay Nov 2023

On Quantifying Uncertainty In Lightning Strike Damage Of Composite Laminates: A Hybrid Stochastic Framework Of Coupled Transient Thermal-Electrical Simulations, R. S. Chahar, J. Lee, T. Mukhopadhyay

Mechanical and Aerospace Engineering Faculty Publications

Lightning strike damage can severely affect the thermo-mechanical performance of composite laminates. It is essential to quantify the effect of lightning strikes considering the inevitable influence of material and geometric uncertainties for ensuring the operational safety of aircraft. This paper presents an efficient support vector machine (SVM)-based surrogate approach coupled with computationally intensive transient thermal-electrical finite element simulations to quantify the uncertainty in lightning strike damage. The uncertainty in epoxy matrix thermal damage and electrical responses of unprotected carbon/epoxy composite laminates is probabilistically quantified considering the stochasticity in temperature-dependent multi-physical material properties and ply orientations. Further, the SVM models are …


Design And Fem Modelling Of Mems Capacitive Accelerometer And Gyroscope For Quadcopter/Uav Applications, Shaikha Rashid Alnaqbi Nov 2023

Design And Fem Modelling Of Mems Capacitive Accelerometer And Gyroscope For Quadcopter/Uav Applications, Shaikha Rashid Alnaqbi

Theses

This study presents the design, simulation, and analysis of Micro Electromechanical Systems (MEMS) sensors, constituting the principal components of MEMS-based Inertial Measurement Units (IMUs). The main objective of the study is to design, simulate and analyze 3-axis capacitive accelerometer and 3-axis gyroscope. The MEMS-based capacitive accelerometers and gyroscope are analyzed using Ansys Workbench. Modal, Static Structural and harmonic analysis are used to obtain resonant frequencies, deformation/stress and profile of amplitude over a wide range of frequencies. Mechanical sensitivity analysis of the designed accelerometer and gyroscope is performed using the Finite Element Method (FEM). Analytical Equations are developed to calculate mechanical …


Aerodynamic & Aeroacoustic Performance Of Wind Turbine Blades Featuring Enhanced Flow-Control, Md Zishan Akhter Nov 2023

Aerodynamic & Aeroacoustic Performance Of Wind Turbine Blades Featuring Enhanced Flow-Control, Md Zishan Akhter

Dissertations

Wind energy, being one of the cleanest and most sustainable sources, has undergone remarkable growth in recent years due to advancements in aerodynamics and increased power output. The research community is actively pursuing the development of cutting-edge solutions to further optimize wind turbine technology, ensuring its maximum efficiency and revolutionizing the landscape of wind power.
This research aims to design and develop flow-control devices for wind turbine blades, employing both active and passive control mechanisms, namely morphing trailing-edge and slot-profile, respectively. The objective is to enhance wind turbine performance across a wide range of wind speeds. The morphing trailing-edge mechanism …


Hardware-In-The-Loop Reaction Wheel Testbed With Camera Vision, Abigail Romero, Harvey Perkins, Stephen Kwok-Choon Oct 2023

Hardware-In-The-Loop Reaction Wheel Testbed With Camera Vision, Abigail Romero, Harvey Perkins, Stephen Kwok-Choon

College of Engineering Summer Undergraduate Research Program

Reaction wheels are widely used in aerospace systems as a method of attitude control. This research was focused on the design, development, and testing of a hardware-in-the-loop reaction wheel testbed that can be used for research and teaching applications related to satellite navigation and control. This project successfully utilized commercial off-the-shelf components to develop a reaction wheel capable of controlling the orientation of a freely rotating platform, as well as tracking objects using computer vision.


The Effect Of Through Thickness Reinforcement Angle On The Disbonding Behavior In Skin-Stringer Configuration, Christopher John Morris Oct 2023

The Effect Of Through Thickness Reinforcement Angle On The Disbonding Behavior In Skin-Stringer Configuration, Christopher John Morris

Mechanical & Aerospace Engineering Theses & Dissertations

Post-cure through thickness reinforcement is a method used to increase the mechanical properties of composite laminates in the transverse direction. This study conducted a test on skin-stringer structures bonded together in three configurations using an epoxy or thermoplastic adhesive at the interface with reinforcing pins inserted through the laminate thickness located at the edge of the stringer at differing angles between -30º and 30º. The fabrication of these samples in configurations B and C consisted of the use of carbon fiber prepeg laminate at a ply orientation of [02902]2s for the skin and [0 90] …


Switching Methods For Three-Dimensional Rotational Dynamics Using Modified Rodrigues Parameters, Matthew Jarrett Banks Oct 2023

Switching Methods For Three-Dimensional Rotational Dynamics Using Modified Rodrigues Parameters, Matthew Jarrett Banks

Mechanical & Aerospace Engineering Theses & Dissertations

A rigid body in space has three degrees of rotational freedom. As a result, a minimum of three independent parameters is required to define the three-dimensional orientation of a rigid body. As is well known, every set of three independent parameters has at least one orientation where mathematical or geometrical singularities are encountered; therefore, when the use of a three-parameter representation is desired, a method for singularity avoidance must also be considered. A common practice for singularity avoidance is to switch between parameter sets whose singularities occur at different orientations. With this in mind, modified Rodrigues parameters (MRP) are considered …


Studies Of Flowfields And Dynamic Stability Characteristics Of A Quadrotor, Engin Baris Oct 2023

Studies Of Flowfields And Dynamic Stability Characteristics Of A Quadrotor, Engin Baris

Mechanical & Aerospace Engineering Theses & Dissertations

Electric multirotor air vehicles have become a pervasive technology and research topic in industry, academia, and daily life, and small quadrotors are one of the most preferred designs in the multirotor marketplace. However, the configuration of the quadrotors makes aerodynamic interaction effects one of the key factors of the vehicle performance in both hover and non-axial forward flight conditions.

In the present work, aerodynamic characteristics of the cross-configured small quadrotor in hover, edgewise, and maneuvering flight modes were investigated in detail by performing static and dynamic wind tunnel tests at various RPM levels, wind speeds, pitch and yaw angles, and …