Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Thermal & Mechanical Analysis Of Bombyx Mori Silk Nanofibers, Justin Busnot Jul 2021

Thermal & Mechanical Analysis Of Bombyx Mori Silk Nanofibers, Justin Busnot

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

This thesis presents a study on the thermomechanical properties of Bombyx Mori silk nanofibers. These nanofibers were obtained from silkworm cocoons which were degummed to separate the fibroin and the sericin, the two proteins that make up silk. The fibroin was then centrifuged to remove insoluble particles and stored and 4°C before the electrospinning process. A parametric study of the electrospinning process was carried out in order to identify the factors allowing to obtain optimal mechanical properties. The current as well as the flow rate applied, the diameter of the syringe, the distance separating the syringe from collector or even …


Aloe Vera Extract-Based Composite Nanofibers For Wound Dressing Applications, Raul Barbosa, Alexa Villarreal, Cristobal Rodriguez, Heriberto De Leon, Robert Gilkerson, Karen Lozano May 2021

Aloe Vera Extract-Based Composite Nanofibers For Wound Dressing Applications, Raul Barbosa, Alexa Villarreal, Cristobal Rodriguez, Heriberto De Leon, Robert Gilkerson, Karen Lozano

Mechanical Engineering Faculty Publications and Presentations

Natural, biocompatible, and biodegradable composite nanofibers made of Aloe vera extract, pullulan, chitosan, and citric acid were successfully produced via Forcespinning® technology. The addition of Aloe vera extract at different weight percent loadings was investigated. The morphology, thermal properties, physical properties, and water absorption of the nanofibers were characterized using scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The developed nanofiber membranes exhibited good water absorption capabilities, synergistic antibacterial activity against Escherichia coli, and promoted cell attachment and growth. Its porous and high surface area structure make it a potential candidate for wound dressing …