Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Isolated Nucleus Stiffens In Response To Low Intensity Vibration, Joshua Newberg Dec 2019

Isolated Nucleus Stiffens In Response To Low Intensity Vibration, Joshua Newberg

Boise State University Theses and Dissertations

The nucleus, central to all cellular activity, relies on both direct mechanical input and its molecular transducers to sense and respond to external mechanical stimuli. This response occurs by regulating intra-nuclear organization that ultimately determines gene expression to control cell function and fate. It has long been known that signals propagate from an extracellular environment to the cytoskeleton and into nucleus (outside-in signaling) to regulate cell behavior. Emerging evidence, however, shows that both the cytoskeleton and the nucleus have inherent abilities to sense and adapt to mechanical force, independent of each other. While it has been shown that isolated nuclei …


Dynamic Modeling Of A Suspended And Shock Isolated System In Seismic Loading, Emilie Murphy Aug 2019

Dynamic Modeling Of A Suspended And Shock Isolated System In Seismic Loading, Emilie Murphy

Boise State University Theses and Dissertations

A dynamic model for a suspended and shock isolated system is derived and implemented in MATLAB’s Simulink software. The purpose of this implementation is to create a design tool which is modularized to be able to accommodate any configuration of a similar system in any kind of loading. The design tool is used to compute the level of acceleration experienced at specific points in space within the system in the presence of seismic events, as typified by the dynamic displacement caused by the Sumatra, Indonesia earthquake of 2007. It is determined that under this 8.4 magnitude earthquake, accelerations within the …


Parameter Estimation And Dynamic State Observer Design For Vapor Compression Systems, Travis D. Pruitt Aug 2019

Parameter Estimation And Dynamic State Observer Design For Vapor Compression Systems, Travis D. Pruitt

Boise State University Theses and Dissertations

Between cooling our house, our workplace, and keeping our food cold both in home and commercially (among other uses), the vapor compression cycle (VCC) is a common method for removing heat from various environments and it accounts for a significant amount of the energy used throughout the world. Therefore, with an ever-growing demand for more efficient processes and reduced energy consumption, improving the ability to accurately model, predict the performance of, and control VCC systems is beneficial to society as whole.

While there is much information available regarding the performance for some of the components found in VCC systems, much …


Design Optimization, Analysis, And Control Of Walking Robots, Wankun Sirichotiyakul Aug 2019

Design Optimization, Analysis, And Control Of Walking Robots, Wankun Sirichotiyakul

Boise State University Theses and Dissertations

Passive dynamic walking refers to the dynamical behavior of mechanical devices that are able to naturally walk down a shallow slope in a stable manner, without using actuation or sensing of any kind. Such devices can attain motions that are remarkably human-like by purely exploiting their natural dynamics. This suggests that passive dynamic walking machines can be used to model and study human locomotion; however, there are two major limitations: they can be difficult to design, and they cannot walk on level ground or uphill without some kind of actuation.

This thesis presents a mechanism design optimization framework that allows …


Swarm Behavior To Mitigate Rebound In Air Conditioning Demand Response Events, Jason Yasuto Kuwada Aug 2019

Swarm Behavior To Mitigate Rebound In Air Conditioning Demand Response Events, Jason Yasuto Kuwada

Boise State University Theses and Dissertations

Thermostatically Controlled Loads (TCLs) have shown great potential for Demand Response (DR) events. However, it has been commonly seen that DR events using TCLs may cause demand rebound, especially in homogeneous populations. To further explore the potential for DR events, as well as the negative effects, a stability and resilience analysis were performed on multiple populations and verified with agent based modeling simulations.

At the core of this study is an added thermostat criterion created from the combination of a proportional gain and the average compressor operating state of neighboring TCLs. Where DR events in TCLs are commonly controlled by …


Factors Affecting Patellar Mechanics And Bone Strain In Patients With Crouch Gait, Erika Ramirez May 2019

Factors Affecting Patellar Mechanics And Bone Strain In Patients With Crouch Gait, Erika Ramirez

Boise State University Theses and Dissertations

Crouch gait is a musculoskeletal impairment that results in higher than normal stresses at the patellofemoral (PF) joint that can lead to instances of anterior knee pain and loss of ambulation. The impact of commonly implemented surgical procedures to correct for crouch gait can be quantified by evaluating stresses and underlying patellar bone strain during a gait cycle. The aims of this thesis work were (1) to analyze changes in PF mechanics and patellar bone strain between pre- and postoperative conditions; (2) to quantify the variability of predicted patellar strain due to different kinematic/loading profiles or patellar material properties; and …


Additive Manufacturing Of High Performance Flexible Thermoelectric Generators Using Nanoparticle Inks, Tony Valayil Varghese May 2019

Additive Manufacturing Of High Performance Flexible Thermoelectric Generators Using Nanoparticle Inks, Tony Valayil Varghese

Boise State University Theses and Dissertations

Flexible thermoelectric devices are attractive power sources for the growing demand of flexible electronics and sensors. Thermoelectric generators have an advantage due to no moving parts, silent operation and constant power production with a thermal gradient.

Conventional thermoelectric devices are rigid and fabricated using complex and relatively costly manufacturing processes, presenting a barrier to increase the market share of this technology. To overcome such barriers, this work focuses on developing near ambient-temperature flexible thermoelectric generators using relatively low-cost additive manufacturing processes. A screen printable ink was developed for transforming nanoparticle ink into high-performance flexible thermoelectric generators with a peak thermoelectric …


Novel Low Temperature Cofired Ceramic Manufacturing Techniques For A Magnetron Field Emission Cathode, Daylon Michael Black May 2019

Novel Low Temperature Cofired Ceramic Manufacturing Techniques For A Magnetron Field Emission Cathode, Daylon Michael Black

Boise State University Theses and Dissertations

Low Temperature Cofired Ceramic (LTCC) is a material system that is ideal for integrated microelectronic packaging technology, because of its rapid prototyping and easy integration of passive components such as resistors, capacitors, and conductors. LTCC’s electrical properties makes it especially suitable for high frequency applications such as magnetrons. Recently, there has been an increased demand for greater power capacities which is resolved by phase locking multiple low power (inexpensive) magnetrons together to achieve the same power as one high power (expensive) magnetron. The Vacuum Electron Devices (VED) and Ceramic Micro Electrical Mechanical Systems (CMEMS) labs at Boise State University have …