Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Development Of Material Model Subroutines For Linear And Nonlinear Response Of Elastomers, Asim Gillani Oct 2018

Development Of Material Model Subroutines For Linear And Nonlinear Response Of Elastomers, Asim Gillani

Electronic Thesis and Dissertation Repository

The nature of elastomers has been extensively studied ever since the vulcanization of rubber in the 19th century. Elastomers have been heavily employed in various fields, such as automobile, aerospace, robotics, biomimetics, dynamics and energy harvesting. Due to their molecular nature, these materials display hyperelastic and viscous response when deformed. Their response has been studied in a number of works, which tend to explain their nature through the theory of polymer dynamics or using rheological models. As elastomers are designed as actuators, generators or artificial tissues with complex geometries, the need for finite element analysis to study their response is …


Chemo-Thermo Cure Of Viscoelastic Materials For Semiconductor Packaging Applications, Anjali Pradeep Kumar Aug 2018

Chemo-Thermo Cure Of Viscoelastic Materials For Semiconductor Packaging Applications, Anjali Pradeep Kumar

Dissertations and Theses

Viscoelastic polymer materials are being actively considered as a novel material for semiconductor packaging applications as a result of their ability to develop strong adhesive bonds at lower temperatures. Viscoelastic thermoset materials are impacted by the stresses generated during the curing process, which is also accompanied by a dissipation of thermal energy. There is a need to develop a generic modeling formulation that is applicable to any material of interest in order to enable the study of different bonding materials and develop optimized curing cycles. This study reports a numerical formulation to evaluate the stress generated and energy dissipated during …


Experimental, Analytical, And Numerical Evaluation Of The Mechanical Properties Of The Brain Tissue, Aref Samadidooki Jun 2018

Experimental, Analytical, And Numerical Evaluation Of The Mechanical Properties Of The Brain Tissue, Aref Samadidooki

LSU Doctoral Dissertations

A true understanding of the mechanisms behind most of the brain diseases is still out of reach. For several years, the interest of scientists has been focused on the genetic and biological causes, however, recent studies unraveled the importance of the biomechanics of the brain growth, folding, impact resistance, and deformation on its pathological conditions. While, a wide range of different methods have been used for characterization of the mechanical properties of the brain at the tissue level, the obtained results from different studies are extremely scattered and sometimes in contrast to one another. Since the brain tissue is extremely …


Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian Jun 2018

Effect Of Material Viscoelasticity On Frequency Tuning Of Dielectric Elastomer Membrane Resonators, Liyang Tian

Electronic Thesis and Dissertation Repository

Dielectric elastomers (DEs) capable of large voltage-induced deformation show promise for applications such as resonators and oscillators. However, the dynamic performance of such vibrational devices is not only strongly affected by the nonlinear electromechanical coupling and material hyperelasticity, but also significantly by the material viscoelasticity. The material viscoelasticity of DEs originates from the highly mobile polymer chains that constitute the polymer networks of the DE. Moreover, due to the multiple viscous polymer subnetworks, DEs possess multiple relaxation processes. Therefore, in order to predict the dynamic performance of DE-based devices, a theoretical model that accounts for the multiple relaxation processes is …


Radial And Longitudinal Motion Of The Arterial Wall: Their Relation To Pulsatile Pressure And Flow In The Artery, Dan Wang, Linda Vahala, Zhili Hao Jan 2018

Radial And Longitudinal Motion Of The Arterial Wall: Their Relation To Pulsatile Pressure And Flow In The Artery, Dan Wang, Linda Vahala, Zhili Hao

Mechanical & Aerospace Engineering Faculty Publications

The aim of this paper is to analyze the radial and longitudinal motion of the arterial wall in the context of pulsatile pressure and flow, and to understand their physiological implications for the cardiovascular system. A reexamination of the well-established one-dimensional governing equations for axial blood flow in the artery and the constitutive equation for the radial dilation of the arterial wall shows that two waves—a pulsatile pressure wave in the artery and a radial displacement wave in the arterial wall—propagate simultaneously along the arterial tree with the same propagation velocity, explaining why this velocity combines the physical properties and …