Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe Dec 2018

Reinventing The Wheel, Esther K. Unti, Ahmed Z. Shorab, Patrick B. Kragen, Adam M. Menashe

Mechanical Engineering

Reinventing the Wheel selected tires and designed wheels for the 2018 Cal Poly, San Luis Obispo Formula SAE combustion vehicle. Available tire options were evaluated for steady-state and transient performance as well as vehicle integration. A single-piece composite wheel with hollow spokes was designed to meet stiffness, strength, and tolerance requirements. A detailed study of wheel loading and geometric structural efficiency was performed. Finite element analysis was used to iterate the geometry and laminate. A two-piece male mold was designed and machined to manufacture the wheel. Removable silicone inserts were used to create the hollow spokes.


Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess Dec 2018

Effect Of Aerogel On The Thermal Performance Of Corrugated Composite Sandwich Structures, Jacob Dillon Chess

Master's Theses

Current insulation solutions across multiple industries, especially the commercial sector, can be bulky and ineffective when considering their volume. Aerogels are excellent insulators, exhibiting low thermal conductivities and low densities with a porosity of around 95%. Such characteristics make aerogels effective in decreasing conductive heat transfer within a solid. These requirements are crucial for aerospace and spaceflight applications, where sensitive components exist among extreme temperature environments. When implemented into insulation applications, aerogel can perform better than existing technology while using less material, which limits the amount of volume allocated for insulation. The application of these materials into composites can result …


Effects Of Automated Fiber Placement On High Strain Rate Compressive Response Of Advanced Composites, Alexander Trochez Jul 2018

Effects Of Automated Fiber Placement On High Strain Rate Compressive Response Of Advanced Composites, Alexander Trochez

Mechanical & Aerospace Engineering Theses & Dissertations

Automated Fiber Placement (AFP) technology shows great promise in manufacturing carbon fiber composite structures. However, intermittent defects occur in the process that can affect the overall mechanical performance of the structure. The aim of this work is to investigate the effects of deliberately placed principal defects (Gap, Overlap, and Fold) on the compressive response under quasistatic (strain rate ~10-3 s-1) and dynamic (strain rate ~103 s-1) loading conditions. The controlled defects were placed at the laminate level in different orientations and depths. High strain rate compression experiments were conducted using a split Hopkinson pressure bar (SHPB) …


Prove Endurance Car Front Suspension, Lauren A. Williams, Logan Simon, Justine G. Kwan Jun 2018

Prove Endurance Car Front Suspension, Lauren A. Williams, Logan Simon, Justine G. Kwan

Mechanical Engineering

This document details the collaborative Mechanical Engineering Senior Project with Cal Poly PROVE Lab on PROVE Lab’s Project 2; an electric vehicle designed to travel 1000 miles on a single charge. Logan Simon, Justine Kwan, and Lauren Williams are given the challenge of designing an innovative proof of concept front suspension suspension for this vehicle.

After detailed research of new suspension systems, it was determined that the innovative nature could be in the form of unique manufacturing methods, materials use, or mechanical design. At this point in time, this vehicle is a purely conceptual design with no concrete requirements. Therefore …


Assisted Development Of Mesophase Pitch With Dispersed Graphene And Its Resulting Carbon Fibers, Aaron Owen Jan 2018

Assisted Development Of Mesophase Pitch With Dispersed Graphene And Its Resulting Carbon Fibers, Aaron Owen

Theses and Dissertations--Mechanical Engineering

The efficacy of dispersed reduced graphene oxide (rGO) as a nucleation site for the growth of mesophase in an isotropic pitch was investigated and quantified in this study. Concentrations of rGO were systematically tested in an isotropic petroleum and coal-tar pitch during thermal treatments and compared to pitch without rGO. The mesophase content of each thermally treated pitch was quantified by polarized light point counting. Further characterization of softening temperature and insolubles were quantified. Additionally, the pitches with and without rGO were melt spun, graphitized, and tensile tested to determine the effects of rGO on graphitized fiber mechanical properties and …


High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan Jan 2018

High Temperature Polymer Composites Using Out-Of-Autoclave Processing, Sudharshan Anandan

Doctoral Dissertations

"High performance polymer composites possess high strength-to-weight ratio, corrosion resistance, and have design flexibility. Carbon/epoxy composites are commonly used aerospace materials. Bismaleimide based composites are used as a replacement for epoxy systems at higher service temperatures. Aerospace composites are usually manufactured, under high pressure, in an autoclave which requires high capital investments and operating costs. In contrast, out-of-autoclave manufacturing, specifically vacuum-bag-only prepreg process, is capable of producing low cost and high performance composites. In the current study, out-of-autoclave processing of high temperature carbon/bismaleimide composites was evaluated. The cure and process parameters were optimized. The properties of out-of-autoclave cured laminates compared …