Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Simulation Of Radiation Flux From Thermal Fluid In Origami Tubes, Robert R. Bebeau Jun 2018

Simulation Of Radiation Flux From Thermal Fluid In Origami Tubes, Robert R. Bebeau

USF Tampa Graduate Theses and Dissertations

Spacecraft in orbit experience temperature swings close to 240 K as the craft passes from the shadow of the Earth into direct sunlight. To regulate the craft’s internal energy, large radiators eject unwanted energy into space using radiation transfer. The amount of radiation emitted is directly related to the topology of the radiator design. Deformable structures such as those made with origami tessellation patterns offer a mechanism to control the quantity of energy being emitted by varying the radiator shape. Three such patterns, the Waterbomb, Huffman Waterbomb, and Huffman Stars-Triangles, can be folded into tubes. Origami tubes offer greater control …


Thermal Modelling And Validation Of Heat Profiles In An Rf Plasma Micro-Thruster, Alec Sean Henken Jun 2018

Thermal Modelling And Validation Of Heat Profiles In An Rf Plasma Micro-Thruster, Alec Sean Henken

Master's Theses

The need and demand for propulsion devices on nanosatellites has grown over the last decade due to interest in expanding nanosatellite mission abilities, such as attitude control, station-keeping, and collision avoidance. One potential micro-propulsion device suitable for nanosatellites is an electrothermal plasma thruster called Pocket Rocket. Pocket Rocket is a low-power, low-cost propulsion platform specifically designed for use in nanosatellites such as CubeSats. Due to difficulties associated with integrating propulsion devices onto spacecraft such as volume constraints and heat dissipation limitations, a characterization of the heat generation and heat transfer properties of Pocket Rocket is necessary. Several heat-transfer models of …


Multiphase Interaction In Low Density Volumetric Charring Ablators, Ali D. Omidy Jan 2018

Multiphase Interaction In Low Density Volumetric Charring Ablators, Ali D. Omidy

Theses and Dissertations--Mechanical Engineering

The present thesis provides a description of historical and current modeling methods with recent discoveries within the ablation community. Several historical assumptions are challenged, namely the presence of water in Thermal Protection System (TPS) materials, presence of coking in TPS materials, non-uniform elemental production during pyrolysis reactions, and boundary layer gases, more specifically oxygen, interactions with the charred carbon interface.

The first topic assess the potential effect that water has when present within the ablator by examining the temperature prole histories of the recent flight case Mars Science Laboratory. The next topic uses experimental data to consider the instantaneous gas …