Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Mechanical Engineering

High Performance Low Temperature Solid Oxide Fuel Cells With Novel Electrode Architecture, Yu Chen, Qian Liu, Zhibin Yang, Fanglin Chen, Minfang Han Dec 2012

High Performance Low Temperature Solid Oxide Fuel Cells With Novel Electrode Architecture, Yu Chen, Qian Liu, Zhibin Yang, Fanglin Chen, Minfang Han

Faculty Publications

In this study, we have fabricated high performance low temperature solid oxide fuel cells (LT-SOFCs) with both acicular anodes and cathodes with thin Gd-doped ceria (GDC) electrolyte film. The acicular Ni-Gd0.1Ce0.9O2−δ (Ni-GDC) anode was prepared using freeze drying tape casting, while the hierarchically porous cathode with nano-size Sm0.5Sr0.5CoO3 (SSC) particles covering an acicular GDC skeleton was prepared by a combination of freeze drying tape casting and self-rising approaches. The acicular electrodes with 5–200 μm pores/channels enhance mass transport, while SSC particles of about 50 nm in the cathode promote …


Technology Portal For Energy Efficient Buildings, Larry D. Hermanson, Daniel Studer, Annie Mroz Aug 2012

Technology Portal For Energy Efficient Buildings, Larry D. Hermanson, Daniel Studer, Annie Mroz

STAR Program Research Presentations

Project: Technology Portal for Energy Efficient Buildings

Date: August 2, 2012

Author: Larry Hermanson

Mentor: Daniel Studer

Cohort: Annie Mroz

Lab site: National Renewable Energy Laboratory (NREL)

Buildings account for 71% of the electricity demand and 39% of the primary energy consumption in the United States. The Commercial Buildings Group at NREL provides builders, designers and building owners accurate information to significantly improve the energy efficiency of new and existing buildings. The Technology Portal for Energy Efficient Buildings will increase the accessibility of standardized and credible energy performance data for all building systems, thereby allowing building owners to better evaluate …


Automated Resonant Wireless Power Transfer To Remote Sensors From An Unmanned Aerial Vehicle, Brent Griffin Aug 2012

Automated Resonant Wireless Power Transfer To Remote Sensors From An Unmanned Aerial Vehicle, Brent Griffin

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Wireless magnetic resonant power transfer is an emerging technology that has many advantages over other wireless power transfer methods due to its safety, lack of interference, and efficiency at medium ranges. In this thesis, we develop a wire- less magnetic resonant power transfer system that enables unmanned aerial vehicles (UAVs) to provide power to, and recharge batteries of, wireless sensors and other electronics far removed from the electric grid. We address the difficulties of implementing and outfitting this system on a UAV with limited payload capabilities and develop a controller that maximizes the received power as the UAV moves into …


Design, Analysis And Testing Of Haptic Feedback System For Laparoscopic Graspers In In Vivo Surgical Robots, Nikhil Salvi Jul 2012

Design, Analysis And Testing Of Haptic Feedback System For Laparoscopic Graspers In In Vivo Surgical Robots, Nikhil Salvi

Department of Mechanical and Materials Engineering: Dissertations, Theses, and Student Research

Laparo-Endoscopic Single Site (LESS) Robotics Surgery is an advanced technology in the field of Minimally Invasive Surgery (MIS). The LESS surgical robots significantly improve the surgeon’s accuracy, dexterity and visualization, and reduce the invasiveness of surgical procedure results in faster recovery time and improved cosmetic results. In a standard robotic endosurgery, the palpation of tissues is performed by laparoscopic graspers located at the end effectors. The master-slave configuration in robotic surgery leads in remote access to the operation site. Therefore, surgeon’s ability to perceive valuable sensory information is severely diminished. Sensory information such as haptics, which is essential for safe …


A Ceramic-Anode Supported Low Temperature Solid Oxide Fuel Cell, Hanping Ding, Junjie Ge, Xingjian Xue Mar 2012

A Ceramic-Anode Supported Low Temperature Solid Oxide Fuel Cell, Hanping Ding, Junjie Ge, Xingjian Xue

Faculty Publications

We report the fabrication and evaluation of a ceramic-anode supported button cell LSCM-SDC/SDC/PBSC (thickness 400 μm/20 μm/20 μm). The anode/electrolyte assembly LSCM-SDC/SDC was co-fired at low temperature of 1250°C, where a slight amount of CuO was mixed with LSCM. The CuO (20.3 wt%) were impregnated into the porous substrate to enhance current collecting effect. The cell exhibited power density of 596 mWcm−2 and 381 mWcm−2 at 700°C with wet hydrogen and methane as the fuel respectively, where the silver paste was used as current collectors, the highest performance up to date for the cells with metal oxide anodes at this …


A New Approach For The Preparation Of Variable Valence Rare Earth Alloys From Nano Rare Earth Oxides At A Low Temperature In Molten Salt, Milin Zhang, Yongde Yan, Wei Han, Xing Li, Zhiyao Hou, Yang Tian, Ke Ye, Lihong Bao, Xiaodong Li, Zhijian Zhang Feb 2012

A New Approach For The Preparation Of Variable Valence Rare Earth Alloys From Nano Rare Earth Oxides At A Low Temperature In Molten Salt, Milin Zhang, Yongde Yan, Wei Han, Xing Li, Zhiyao Hou, Yang Tian, Ke Ye, Lihong Bao, Xiaodong Li, Zhijian Zhang

Faculty Publications

The solubility of RE2O3 (RE = Eu, Sm, and Yb) with variable valence in molten salts is extremely low. It is impossible to directly obtain variable valence metals or alloys from RE2O3 using electrolysis in molten salts. We describe a new approach for the preparation of variable valence rare earth alloys from nano rare earth oxide. The excellent dispersion of nano–Eu2O3 in LiCl–KCl melts was clearly observed using a luminescent feature of Eu3+ as a probe. The ratio of solubility of nano-Sm2O3/common Sm2O3 …


Semi-Active Damping For An Intelligent Adaptive Ankle Prosthesis, Andrew K. Lapre Jan 2012

Semi-Active Damping For An Intelligent Adaptive Ankle Prosthesis, Andrew K. Lapre

Masters Theses 1911 - February 2014

Modern lower limb prostheses are devices that replace missing limbs, making it possible for lower limb amputees to walk again. Most commercially available prosthetic limbs lack intelligence and passive adaptive capabilities, and none available can adapt on a step by step basis. Often, amputees experience a loss of terrain adaptability as well as stability, leaving the amputee with a severely altered gait. This work is focused on the development of a semi-active damping system for use in intelligent terrain adaptive ankle prostheses. The system designed consists of an optimized hydraulic cylinder with an electronic servo valve which throttles the hydraulic …


Electrokinetic Flow In Polyelectrolyte–Modified Nanopores, L. H. Yeh, M. Zhang, Shizhi Qian, J. P. Hsu, S. W. Joo Jan 2012

Electrokinetic Flow In Polyelectrolyte–Modified Nanopores, L. H. Yeh, M. Zhang, Shizhi Qian, J. P. Hsu, S. W. Joo

Mechanical & Aerospace Engineering Faculty Publications

No abstract provided.


High Tech High Touch: Lessons Learned From Project Haiti 2011, Yan Tang, Marc Compere, Yung Lun Wong, Jared Anthony Coleman, Matthew Charles Selkirk Jan 2012

High Tech High Touch: Lessons Learned From Project Haiti 2011, Yan Tang, Marc Compere, Yung Lun Wong, Jared Anthony Coleman, Matthew Charles Selkirk

Publications

In this paper, we will share our experiences and lessons learned from a design project for providing clean water to a Haitian orphanage (Project Haiti 2011). Supported by funds from a renewable energy company and the university president’s office, five engineering students and two faculty members from Embry-Riddle Aeronautical University successfully designed and installed a solar powered water purification system for an orphanage located in Chambellan, Haiti. This paper discusses the unique educational experiences gained from unusual design constraints, such as ambiguity of existing facilities due to limited communication, logistics of international construction at a remote village location, and cross-cultural …


Multi-Disciplinary Hands-On Desktop Learning Modules And Modern Pedagogies, Bernard J. Van Wie, David B. Thiessen, Marc Compere, Ximena Toro, Jennifer C. Adam, Et Al. Jan 2012

Multi-Disciplinary Hands-On Desktop Learning Modules And Modern Pedagogies, Bernard J. Van Wie, David B. Thiessen, Marc Compere, Ximena Toro, Jennifer C. Adam, Et Al.

Publications

Our team’s research focuses on fundamental problems in undergraduate education in terms of how to expand use of well researched, yet still “new”, teaching pedagogies of ‘sensing’ or ‘hands-on’, ‘active’ and ‘problem-based learning’ within engineering courses. It is now widely accepted that traditional lectures ARE NOT best for students – yet that is what the community almost universally does.

To address this issue we are developing new Desktop Learning Modules (DLMs) that contain miniaturized processes with a uniquely expandable electronic system to contend with known sensor systems/removable cartridges, as well as, unknown expansions to the project. We have shown that …


Development Of A Robotic Platform For Upper Limb Rehabilitation, Stephen Curran, Nigel Kent, David Kennedy, James Conlon Jan 2012

Development Of A Robotic Platform For Upper Limb Rehabilitation, Stephen Curran, Nigel Kent, David Kennedy, James Conlon

Conference Papers

The aim of this project is to develop a rehabilitation robot intended for use in a non-specialised or domestic setting. Robots have been shown to have a positive effect on limb rehabilitation and developing rehabilitation robots for use outside of specialist rehabilitation centres could be beneficial in terms of access to, intensity and cost of treatment. The device is intended for the rehabilitation of the shoulder/elbow region of the upper limbs. The design requirements for such a device mean that it must be low cost, portable, robust and have a detailed focus on safety. Other areas of interest pertaining to …


Fluidic Assembly At The Microscale: Progress And Prospects, Nathan B. Crane, Onursal Onen, Jose Carballo, Qi Ni, Rasim Guldiken Jan 2012

Fluidic Assembly At The Microscale: Progress And Prospects, Nathan B. Crane, Onursal Onen, Jose Carballo, Qi Ni, Rasim Guldiken

Faculty Publications

Assembly permits the integration of different materials and manufacturing processes to increase system functionality. It is an essential step in the fabrication of useful systems across size scales from buildings to molecules. However, at the microscale, traditional “grasp and release” assembly methods and chemically inspired self-assembly processes are less effective due to many scaling effects. Many methods have been developed for improving microscale assembly. Often these methods include fluidic forces or the use a fluidic medium in order to enhance their performance. This paper reviews basic assembly theory and modeling methods. Three basic assembly strategies (tool-directed, process-directed, and part-directed) are …


A Material System For Reliable Low Voltage Anodic Electrowetting, Mehdi Khodayari, Jose Carballo, Nathan B. Crane Jan 2012

A Material System For Reliable Low Voltage Anodic Electrowetting, Mehdi Khodayari, Jose Carballo, Nathan B. Crane

Faculty Publications

Electrowetting on dielectric is demonstrated with a thin spin-coated fluoropolymer over an aluminum electrode. Previous efforts to use thin spin-coated dielectric layers for electrowetting have shown limited success due to defects in the layers. However, when used with a citric acid electrolyte and anodic voltages, repeatable droplet actuation is achieved for 5000 cycles with an actuation of just 10 V. This offers the potential for low voltage electrowetting systems that can be manufactured with a simple low-cost process.