Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2012

University of Massachusetts Amherst

Discipline
Keyword
Publication
Publication Type

Articles 1 - 20 of 20

Full-Text Articles in Mechanical Engineering

Large Excitonic Effects In Monolayers Of Molybdenum And Tungsten Dichalcogenides, Ashwin Ramasubramaniam Sep 2012

Large Excitonic Effects In Monolayers Of Molybdenum And Tungsten Dichalcogenides, Ashwin Ramasubramaniam

Mechanical and Industrial Engineering Faculty Publication Series

Quasiparticle band structures and optical properties of MoS2, MoSe2, MoTe2, WS2, and WSe2 monolayers are studied using the GW approximation in conjunction with the Bethe-Salpeter equation (BSE). The inclusion of two-particle excitations in the BSE approach reveals the presence of two strongly bound excitons (A and B) below the quasiparticle absorption onset arising from vertical transitions between a spin-orbit-split valence band and the conduction band at the K point of the Brillouin zone. The transition energies for monolayer MoS2, in particular, are shown to be in excellent agreement with available absorption and photoluminescence measurements. Excitation energies for the remaining monolayers …


A Study On Small Scale Intermittency Using Direct Numerical Simulation Of Turbulence, Saba Almalkie May 2012

A Study On Small Scale Intermittency Using Direct Numerical Simulation Of Turbulence, Saba Almalkie

Open Access Dissertations

Theory of turbulence at small scales plays a fundamental role in modeling turbulence and in retrieving information from physical measurements of turbulent flows. A systematic methodology based on direct numerical simulations of turbulent flows is developed to investigate universality of small scale turbulence. Understanding characteristics of the small scale intermittency in turbulent flows and the accuracy of the models, measurements, and theories in predicting it are the main objectives. The research is designed to address two central questions; 1) possible effects of large scale anisotropies on the small scale turbulence and 2) potential biases in characterizing small scale turbulence due …


The Oriented-Eddy Collision Model, Michael Bernard Martell Jr. May 2012

The Oriented-Eddy Collision Model, Michael Bernard Martell Jr.

Open Access Dissertations

The physical and mathematical foundations of the Oriented-Eddy Collision turbulence model are provided through a discussion of the Reynolds averaged Navier-Stokes (RANS) equations, probability density functions (PDF), PDF collision models, Reynolds stress transport models (RSTM), and two-point correlations. Behavior of the Oriented-Eddy Collision turbulence model near solid boundaries is examined in depth. The Oriented-Eddy Collision turbulence model treats turbulence in a novel way: the average behavior of a turbulent flow can be modeled as a collection of interacting fluid particles, or eddies, which have inherent orientation. The model is cast in the form of a collection of Reynolds stress transport …


Acceleration Of Cfd And Data Analysis Using Graphics Processors, Ali Khajeh Saeed Feb 2012

Acceleration Of Cfd And Data Analysis Using Graphics Processors, Ali Khajeh Saeed

Open Access Dissertations

Graphics processing units function well as high performance computing devices for scientific computing. The non-standard processor architecture and high memory bandwidth allow graphics processing units (GPUs) to provide some of the best performance in terms of FLOPS per dollar. Recently these capabilities became accessible for general purpose computations with the CUDA programming environment on NVIDIA GPUs and ATI Stream Computing environment on ATI GPUs. Many applications in computational science are constrained by memory access speeds and can be accelerated significantly by using GPUs as the compute engine. Using graphics processing units as a compute engine gives the personal desktop computer …


The Aerodynamics And Near Wake Of An Offshore Floating Horizontal Axis Wind Turbine, Thomas Sebastian Feb 2012

The Aerodynamics And Near Wake Of An Offshore Floating Horizontal Axis Wind Turbine, Thomas Sebastian

Open Access Dissertations

Offshore floating wind turbines represent the future of wind energy. However, significant challenges must be overcome before these systems can be widely used. Because of the dynamics of offshore floating wind turbines -- surge, sway, heave, roll, pitch, and yaw -- and the resulting interactions between the rotor and generated wake, the aerodynamic analysis methods and design codes that have found wide use throughout the wind energy industry may be inadequate. Application of these techniques to offshore floating wind turbine aerodynamics may result in off-optimal designs, effectively handicapping these next-generation systems, thereby minimizing their full potential. This dissertation will demonstrate …


Load Reduction Of Floating Wind Turbines Using Tuned Mass Dampers, Gordon M. Stewart Jan 2012

Load Reduction Of Floating Wind Turbines Using Tuned Mass Dampers, Gordon M. Stewart

Masters Theses 1911 - February 2014

Offshore wind turbines have the potential to be an important part of the United States' energy production profile in the coming years. In order to accomplish this wind integration, offshore wind turbines need to be made more reliable and cost efficient to be competitive with other sources of energy. To capitalize on high speed and high quality winds over deep water, floating platforms for offshore wind turbines have been developed, but they suffer from greatly increased loading. One method to reduce loads in offshore wind turbines is the application of structural control techniques usually used in skyscrapers and bridges. Tuned …


Techniques For Industrial Implementation Of Emerging Semantic Technologies, Jay T. Breindel Jan 2012

Techniques For Industrial Implementation Of Emerging Semantic Technologies, Jay T. Breindel

Masters Theses 1911 - February 2014

Techniques for the industrial implementation of emerging semantic technologies are presented in this research. Every new design, project, and procedure within a company generates a considerable amount of new information and important knowledge. Furthermore, a tremendous amount of legacy knowledge already exists within companies in electronic and non-electronic formats. All of this generated knowledge results in the need for tools and techniques to represent, structure, and reuse this knowledge. Researchers have spent considerable time and effort developing semantic knowledge management systems, with anticipation that these tools will address these knowledge management needs. However, little has been done to implement these …


Simulations Of Non-Contact Creep In Regimes Of Mixed Dominance, Maija Benitz Jan 2012

Simulations Of Non-Contact Creep In Regimes Of Mixed Dominance, Maija Benitz

Masters Theses 1911 - February 2014

Improvement of high temperature applications relies on the further development of ultra-high temperature materials (UHTMs). Higher performance and efficiency is driving the need for improvements in energy conversion and propulsion systems. Rocket nozzles, gas turbine engines and hypersonic aircraft depend on a better understanding of a material's performance at high temperatures. More specifically, the characterization of creep properties of high temperature materials is required. Conventional creep testing methods are limited to about 1700 degrees Celsius. Non-contact methods have been developed, which rotate spherical samples up to 33,000 rotations per second. A load is supplied by centripetal acceleration causing deformation of …


Viscoelastic Flow Through Contraction Geometries, Ashwin Karthik Sankaran Jan 2012

Viscoelastic Flow Through Contraction Geometries, Ashwin Karthik Sankaran

Masters Theses 1911 - February 2014

Contraction flow of viscoelastic fluids has been a benchmark problem in non-Newtonian fluid mechanics because it mimics flows occurring in a number of industrial applications. It is also of considerable interest to academia to gain fundamental understanding of factors that affect the evolution of vortices and a complete understanding of the dynamics for a simple polymeric fluid has not been achieved. In this two part study we investigate the effect of pre deformation of a Boger fluid in a contraction geometry and the flow of surfactants in a parallel contraction geometry.

Entry flow of a polymeric fluid results in the …


Development Of A Cost Minimizing Strategy To Mitigate Bird Mortalities In A Wind Farm, Karamvir Singh Jan 2012

Development Of A Cost Minimizing Strategy To Mitigate Bird Mortalities In A Wind Farm, Karamvir Singh

Masters Theses 1911 - February 2014

Wind is the second largest renewable energy source after solar. It is one of the fastest growing sources of electricity in the world and currently of wind energy is installed in the United States and an additional is under construction (Office of Energy and Environment Affairs, 2011). For the growth of wind electricity, one of the most prominent environmental concerns relates to the death of birds, bats and other avian species resulting from collision with turbine blades.

This thesis develops a model that provides the optimal strategy of turning the turbines off in a wind farm for certain periods to …


Semi-Active Damping For An Intelligent Adaptive Ankle Prosthesis, Andrew K. Lapre Jan 2012

Semi-Active Damping For An Intelligent Adaptive Ankle Prosthesis, Andrew K. Lapre

Masters Theses 1911 - February 2014

Modern lower limb prostheses are devices that replace missing limbs, making it possible for lower limb amputees to walk again. Most commercially available prosthetic limbs lack intelligence and passive adaptive capabilities, and none available can adapt on a step by step basis. Often, amputees experience a loss of terrain adaptability as well as stability, leaving the amputee with a severely altered gait. This work is focused on the development of a semi-active damping system for use in intelligent terrain adaptive ankle prostheses. The system designed consists of an optimized hydraulic cylinder with an electronic servo valve which throttles the hydraulic …


Effect Of Slip On Flow Past Superhydrophobic Cylinders, Pranesh Muralidhar Jan 2012

Effect Of Slip On Flow Past Superhydrophobic Cylinders, Pranesh Muralidhar

Masters Theses 1911 - February 2014

Superhydrophobic surfaces are a class of surfaces that have a microscale roughness imposed on an already hydrophobic surface, akin to a lotus leaf. These surfaces have been shown to produce significant drag reduction for both laminar and turbulent flows of water through large and small-scale channels. The goal of this thesis was to explore how these surfaces alter the vortex shedding dynamics of a cylindrical body when coated on its surface, thus leading to an alteration in drag and lift on these surfaces. A cylindrical body was chosen as it is a very nice representative bluff body and sets the …


Vibration Reduction Of Offshore Wind Turbines Using Tuned Liquid Column Dampers, Colin Roderick Jan 2012

Vibration Reduction Of Offshore Wind Turbines Using Tuned Liquid Column Dampers, Colin Roderick

Masters Theses 1911 - February 2014

Offshore wind turbines (OWTs) are becoming an accepted method for generating electricity. The environmental conditions of offshore locations often impose high wind and wave forces on OWTs making them susceptible to intense loading and undesirable vibrations. One method to reduce system vibrations is through the use of structural control devices typically utilized in civil structures. Tuned liquid column dampers (TLCDs) show great promise in the application to OWTs due to their high performance and low cost. This thesis examines the use of TLCDs in OWTs.

Equations of motion for limited degree-of-freedom TLCD-turbine models are presented. A baseline analysis of each …


Vortex-Induced Vibrations Of An Inclined Cylinder In Flow, Anil B. Jain Jan 2012

Vortex-Induced Vibrations Of An Inclined Cylinder In Flow, Anil B. Jain

Masters Theses 1911 - February 2014

When a bluff body is placed in flow, vortices are shed downstream of the body. For the case of a bluff body with a circular cross-section (a cylinder) attached to a spring and a damper, when the frequency of vortex shedding is close to the natural frequency of the structure, the cylinder oscillates in a direction perpendicular to the flow. This is called Vortex Induced Vibration (VIV) and is a canonical problem in fluid-structure interactions. The majority of studies on VIV of a flexibly mounted rigid cylinder are for the cases where the flow direction is perpendicular to the long …


Finite Element Analysis Of A Femur To Deconstruct The Design Paradox Of Bone Curvature, Sameer Jade Jan 2012

Finite Element Analysis Of A Femur To Deconstruct The Design Paradox Of Bone Curvature, Sameer Jade

Masters Theses 1911 - February 2014

The femur is the longest limb bone found in humans. Almost all the long limb bones found in terrestrial mammals, including the femur studied herein, have been observed to be loaded in bending and are curved longitudinally. The curvature in these long bones increases the bending stress developed in the bone, potentially reducing the bone’s load carrying capacity, i.e. its mechanical strength. Therefore, bone curvature poses a paradox in terms of the mechanical function of long limb bones. The aim of this study is to investigate and explain the role of longitudinal bone curvature in the design of long bones. …


Investigating The Relationship Between Material Property Axes And Strain Orientations In Cebus Apella Crania, Christine M. Dzialo Jan 2012

Investigating The Relationship Between Material Property Axes And Strain Orientations In Cebus Apella Crania, Christine M. Dzialo

Masters Theses 1911 - February 2014

Probabilistic finite element analysis was used to determine whether there is a statistically significant relationship between maximum principal strain orientations and orthotropic material stiffness orientations in a primate cranium during mastication. We first sought to validate our cranium finite element model by sampling in-vivo strain and in-vivo muscle activation data during specimen mastication. A comparison of in vivo and finite element predicted (i.e. in silico) strains was performed to establish the realism of the FEM model. To the best of our knowledge, this thesis presents the world’s only complete in-vivo coupled with in-vitro validation data set of a primate cranium …


A Nonlinear Model For Wind-Induced Oscillations Of Trees, Lakshmi Narayanan Ramanujam Jan 2012

A Nonlinear Model For Wind-Induced Oscillations Of Trees, Lakshmi Narayanan Ramanujam

Masters Theses 1911 - February 2014

Ambient wind causes trees to oscillate. Wind-induced oscillations of trees constitute a fluid-structure interaction problem, which has been studied by many researchers from various points of view. However, there is yet a lot to be done. From an engineering point of view, the complex structure of trees, which are very different from man-made structures, as well as the highly nonlinear interaction between wind and tree, makes it a challenging task to predict the amplitude and frequency of the resulting oscillations. From a biological point of view, the influence of wind on photosynthesis as well as the growth and death of …


Physical Model Of The Feeding Strike Of The Mantis Shrimp, Suzanne M. Cox Jan 2012

Physical Model Of The Feeding Strike Of The Mantis Shrimp, Suzanne M. Cox

Masters Theses 1911 - February 2014

A physical model was built to study the properties of the feeding strike of the mantis shrimp that are responsible for drag reduction and cavitation control. The model had three goals: 1) The model was to be outfitted with a method to collect kinematic, force and cavitation data. 2) The velocity and acceleration profile of the model were to be predicted with a mathematical model of the mechanism. 3) The model was to match as many drag and cavitation sensitive properties of the mantis shrimp strike as feasible and have a means to control the rest. The first iteration of …


High Speed Flow Simulation In Fuel Injector Nozzles, Sukanta Rakshit Jan 2012

High Speed Flow Simulation In Fuel Injector Nozzles, Sukanta Rakshit

Masters Theses 1911 - February 2014

Atomization of fuel is essential in controlling combustion inside a direct injection engine. Controlling combustion helps in reducing emissions and boosting efficiency. Cavitation is one of the factors that significantly affect the nature of spray in a combustion chamber. Typical fuel injector nozzles are small and operate at a very high pressure, which limit the study of internal nozzle behavior. The time and length scales further limit the experimental study of a fuel injector nozzle. Simulating cavitation in a fuel injector will help in understanding the phenomenon and will assist in further development.

The construction of any simulation of cavitating …


Analysis Of The Induction And Wake Evolution Of An Offshore Floating Wind Turbine, Thomas Sebastian, Matthew Lackner Jan 2012

Analysis Of The Induction And Wake Evolution Of An Offshore Floating Wind Turbine, Thomas Sebastian, Matthew Lackner

Matthew Lackner

The degrees-of-freedom associated with offshore floating wind turbines (OFWTs) result in a more dynamic flow field. The resulting aerodynamic loads may be significantly influenced by these motions via perturbations in the evolving wake. This is of great interest in terms of OFWT design, placement and simulation. This study presents free vortex wake method (FVM) simulations of the NREL 5-MW wind turbine of a variety of platforms, operating in a range of wind speeds synthesized platform motion time series. Motion-induced wake perturbations are observed to affect induction. Transitions between windmill and propeller states are also observed.