Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2012

Aerodynamics and Fluid Mechanics

Finite elements

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Wind Turbine Aerodynamics Using Ale–Vms: Validation And The Role Of Weakly Enforced Boundary Conditions, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs Oct 2012

Wind Turbine Aerodynamics Using Ale–Vms: Validation And The Role Of Weakly Enforced Boundary Conditions, Ming-Chen Hsu, Ido Akkerman, Yuri Bazilevs

Ming-Chen Hsu

In this article we present a validation study involving the full-scale NREL Phase VI two-bladed wind turbine rotor. The ALE–VMS formulation of aerodynamics, based on the Navier–Stokes equations of incompressible flows, is employed in conjunction with weakly enforced essential boundary conditions. We find that the ALE–VMS formulation using linear tetrahedral finite elements is able to reproduce experimental data for the aerodynamic (low-speed shaft) torque and cross-section pressure distribution of the NREL Phase VI rotor. We also find that weak enforcement of essential boundary conditions is critical for obtaining accurate aerodynamics results on relatively coarse boundary layer meshes. The proposed numerical …


Ale-Vms And St-Vms Methods For Computer Modeling Of Wind-Turbine Rotor Aerodynamics And Fluid–Structure Interaction, Yuri Bazilevs, Ming-Chen Hsu, Kenji Takizawa, Tayfun E. Tezduyar Jul 2012

Ale-Vms And St-Vms Methods For Computer Modeling Of Wind-Turbine Rotor Aerodynamics And Fluid–Structure Interaction, Yuri Bazilevs, Ming-Chen Hsu, Kenji Takizawa, Tayfun E. Tezduyar

Ming-Chen Hsu

We provide an overview of the Arbitrary Lagrangian–Eulerian Variational Multiscale (ALE-VMS) and Space–Time Variational Multiscale (ST-VMS) methods we have developed for computer modeling of wind-turbine rotor aerodynamics and fluid–structure interaction (FSI). The related techniques described include weak enforcement of the essential boundary conditions, Kirchhoff–Love shell modeling of the rotor-blade structure, NURBS-based isogeometric analysis, and full FSI coupling. We present results from application of these methods to computer modeling of NREL 5MW and NREL Phase VI wind-turbine rotors at full scale, including comparison with experimental data.