Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2007

Series

UAS

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Experiments In Cooperative Timing For Miniature Air Vehicles, Timothy Mclain, Derek R. Nelson, Randal W. Beard Aug 2007

Experiments In Cooperative Timing For Miniature Air Vehicles, Timothy Mclain, Derek R. Nelson, Randal W. Beard

Faculty Publications

This paper presents experimental results for two cooperative timing missions carried out using a team of three miniature air vehicles (MAVs). Using a cooperative timing algorithm based on coordination functions and coordination variables, the MAV team executed a series of simultaneous arrival and cooperative fly-by missions. In the presence of significant wind disturbances, the average time difference between the first and last vehicle in the simultaneous arrival experiments was 1.6 s. For the cooperative fly-by experiments, the average timing error between vehicle arrivals was 0.6 s. These results demonstrate the practical feasibility of the cooperative timing approach.


Vector Field Path Following For Miniature Air Vehicles, Timothy Mclain, Derek R. Nelson, D. Blake Barber, Randall W. Beard Jun 2007

Vector Field Path Following For Miniature Air Vehicles, Timothy Mclain, Derek R. Nelson, D. Blake Barber, Randall W. Beard

Faculty Publications

In this paper, a method for accurate path following for miniature air vehicles is developed. The method is based on the notion of vector fields, which are used to generate desired course inputs to inner-loop attitude control laws. Vector-field path-following control laws are developed for straight-line paths and circular arcs and orbits. Lyapunov stability arguments are used to demonstrate asymptotic decay of path-following errors in the presence of constant wind disturbances. Experimental flight tests have demonstrated mean path-following errors on less than one wingspan for straight-line and orbit paths and less than three wingspans for paths with frequent changes in …


Obstacle And Terrain Avoidance For Miniature Aerial Vehicles, Timothy Mclain, Jeff Saunders, Blake Barber, Randall W. Beard, Stephen R. Griffiths Jan 2007

Obstacle And Terrain Avoidance For Miniature Aerial Vehicles, Timothy Mclain, Jeff Saunders, Blake Barber, Randall W. Beard, Stephen R. Griffiths

Faculty Publications

Unmanned aerial vehicles (UAVs) are playing increasingly prominent roles in defense programs and strategy around the world. Technology advancements have enabled the development of large UAVs (e.g., Global Hawk, Predator) and the creation of smaller, increasingly capable UAVs. The focus of this Chapter is on smaller fixed-wing miniature aerial vehicles (MAVs), which range in size from % to 2 m in wingspan. As recent conflicts have demonstrated, there are numerous military applications for MAVs including reconnaissance, surveillance, battle damage assessment, and communications relays.