Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 3 of 3

Full-Text Articles in Mechanical Engineering

Obstacle Avoidance Using Circular Paths, Timothy Mclain, Randal W. Beard, Jeffery Brian Saunders Aug 2007

Obstacle Avoidance Using Circular Paths, Timothy Mclain, Randal W. Beard, Jeffery Brian Saunders

Faculty Publications

This paper develops a method of obstacle avoidance for fixed-wing miniature air vehicles (MAV) using a series of circular oscillating paths and a single point laser ranger. The laser ranger is a low power, light-weight device used to report the distance to an object in a single direction of the body frame of a MAV. The oscillating paths allow the laser ranger to scan for obstacles and possible escape paths for the MAV in the case of obstacle detection. The circular paths are generated along waypoint paths and transition between waypoint paths without loss of scanning capabilities. Obstacle avoidance is …


Cooperative Uav Formation Flying With Obstacle/Collision Avoidance, Xiaohua Wang, Vivek Yadav, S. N. Balakrishnan Jul 2007

Cooperative Uav Formation Flying With Obstacle/Collision Avoidance, Xiaohua Wang, Vivek Yadav, S. N. Balakrishnan

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Navigation problems of unmanned air vehicles (UAVs) flying in a formation in a free and an obstacle-laden environment are investigated in this brief. when static obstacles popup during the flight, the UAVs are required to steer around them and also avoid collisions between each other. In order to achieve these goals, a new dual-mode control strategy is proposed: a “safe mode” is defined as an operation in an obstacle-free environment and a “danger mode” is activated when there is a chance of collision or when there are obstacles in the path. Safe mode achieves global optimization because the dynamics of …


Obstacle And Terrain Avoidance For Miniature Aerial Vehicles, Timothy Mclain, Jeff Saunders, Blake Barber, Randall W. Beard, Stephen R. Griffiths Jan 2007

Obstacle And Terrain Avoidance For Miniature Aerial Vehicles, Timothy Mclain, Jeff Saunders, Blake Barber, Randall W. Beard, Stephen R. Griffiths

Faculty Publications

Unmanned aerial vehicles (UAVs) are playing increasingly prominent roles in defense programs and strategy around the world. Technology advancements have enabled the development of large UAVs (e.g., Global Hawk, Predator) and the creation of smaller, increasingly capable UAVs. The focus of this Chapter is on smaller fixed-wing miniature aerial vehicles (MAVs), which range in size from % to 2 m in wingspan. As recent conflicts have demonstrated, there are numerous military applications for MAVs including reconnaissance, surveillance, battle damage assessment, and communications relays.