Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Computational Constitutive Model For Predicting Nonlinear Viscoelastic Damage And Fracture Failure Of Asphalt Concrete Mixtures, Yong-Rak Kim, D. H. Allen, D. N. Little Apr 2007

Computational Constitutive Model For Predicting Nonlinear Viscoelastic Damage And Fracture Failure Of Asphalt Concrete Mixtures, Yong-Rak Kim, D. H. Allen, D. N. Little

Department of Engineering Mechanics: Faculty Publications

A computational constitutive model was developed to predict damage and fracture failure of asphalt concrete mixtures. Complex heterogeneity and inelastic mechanical behavior are addressed by the model by using finite-element methods and elastic– viscoelastic constitutive relations. Damage evolution due to progressive cracking is represented by randomly oriented interface fracture, which is governed by a newly developed nonlinear viscoelastic cohesive zone model. Computational simulations demonstrate that damage evolution and failure of asphalt concrete mixtures is dependent on the mechanical properties of the mixture. This approach is suitable for the relative evaluation of asphalt concrete mixtures by simply employing material properties and …


Observations Of Structural Damage Caused By Hurricane Katrina On The Mississippi Gulf Coast, Christopher D. Eamon, Patrick Fitzpatrick, Dennis D. Truax Apr 2007

Observations Of Structural Damage Caused By Hurricane Katrina On The Mississippi Gulf Coast, Christopher D. Eamon, Patrick Fitzpatrick, Dennis D. Truax

Civil and Environmental Engineering Faculty Research Publications

The loads associated with Hurricane Katrina led to the destruction or severe damage of approximately 130,000 homes and over 200 deaths in the state of Mississippi. This paper discusses the results of a field inspection of structural damage along the state’s Gulf Coast area caused by this hurricane. It was found that reinforced concrete, steel frame, and heavy timber structures generally performed well, with minimal structural damage. Precast concrete, light frame wood, and bridge structures generally performed poorly. Non-structural components of all building types, in particular facades and interior partitions subjected to storm surge, were typically destroyed. For various structures, …