Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Experimental Investigation Of Effect Of Environment Temperature On Freeze-Form Extrusion Fabrication, Xiyue Zhao, Michael S. Mason, Tieshu Huang, Ming-Chuan Leu, Robert G. Landers, Greg Hilmas, Samuel J. Easley, Michael W. Hayes Aug 2007

Experimental Investigation Of Effect Of Environment Temperature On Freeze-Form Extrusion Fabrication, Xiyue Zhao, Michael S. Mason, Tieshu Huang, Ming-Chuan Leu, Robert G. Landers, Greg Hilmas, Samuel J. Easley, Michael W. Hayes

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Freeze-form Extrusion Fabrication (FEF) is an additive manufacturing technique that extrudes ceramic loaded aqueous pastes layer by layer below the paste freezing temperature for component fabrication. A computer controlled 3-D gantry system has been developed for the FEF process. The system includes a temperature control subsystem that allows for fabrication of components below the paste freezing temperature. The low temperature environment allows for larger component fabrication. Comparisons in terms of layer thickness, self-sustaining ability, and system response were performed between 0⁰C and -20⁰C for alumina sample fabrications. The minimum deposition angles without use of support material have been determined for …


Modeling And Simulation Of A Laser Deposition Process, Frank W. Liou, Zhiqiang Fan, Heng Pan, Kevin P. Slattery, Mary Kinsella, Joseph William Newkirk, Hsin-Nan Chou Aug 2007

Modeling And Simulation Of A Laser Deposition Process, Frank W. Liou, Zhiqiang Fan, Heng Pan, Kevin P. Slattery, Mary Kinsella, Joseph William Newkirk, Hsin-Nan Chou

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A laser deposition process involves the supply of metallic powders into a laser-heated spot where the powder is melted and forms a melt puddle which quickly solidifies into a bead. In order to design an effective system, the laser beam, the powder beam, and their interactions need to be fully understood. In this paper, the laser-material interaction within the melt pool is reported using a multi-scale model: A macroscopic model to model mass, heat, and momentum transfer. Experiments were also conducted to validate the simulation model.


Aqueous-Based Extrusion Fabrication Of Ceramics On Demand, Michael S. Mason, Tieshu Huang, Robert G. Landers, Ming-Chuan Leu, Greg Hilmas, Michael W. Hayes Aug 2007

Aqueous-Based Extrusion Fabrication Of Ceramics On Demand, Michael S. Mason, Tieshu Huang, Robert G. Landers, Ming-Chuan Leu, Greg Hilmas, Michael W. Hayes

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Aqueous-Based Extrusion Fabrication is an additive manufacturing technique that extrudes ceramic slurries of high solids loading layer by layer for part fabrication. The material reservoir in a previously developed system has been modified to allow for starting and stopping of extrusion process on demand. Design pros and cons are examined and a comparison between two material reservoir designs is made. Tests were conducted to determine the optimal deposition parameters for starting and stopping of the extrudate on demand. The collected test data is used to create a process model that describes the relationship between ram velocity and material extrusion rate. …


Numerical Simulation Of The Evolution Of Solidification Microstructure In Laser Deposition, Zhiqiang Fan, Todd E. Sparks, Frank W. Liou, Anand Jambunathan, Yaxin Bao, Jianzhong Ruan, Joseph William Newkirk Aug 2007

Numerical Simulation Of The Evolution Of Solidification Microstructure In Laser Deposition, Zhiqiang Fan, Todd E. Sparks, Frank W. Liou, Anand Jambunathan, Yaxin Bao, Jianzhong Ruan, Joseph William Newkirk

Mechanical and Aerospace Engineering Faculty Research & Creative Works

A predictive model is developed to simulate the evolution of the solidification microstructure during the laser deposition process. The microstructure model is coupled with a comprehensive macroscopic thermodynamic model. This model simulates dendritic grain structures and morphological evolution in solidification. Based on the cellular automata approach, this microstructure model takes into account the heterogeneous nucleation both within the melt pool and at the substrate/melt interface, the growth kinetics, and preferential growth directions of dendrites. Both diffusion and convection effects are included. This model enables prediction and visualization of grain structures during and after the deposition process. This model is applied …


Fracture Toughness Of Ceramic Moulds For Investment Casting With Ice Patterns, Qingbin Liu, Ming-Chuan Leu, Von Richards Jan 2007

Fracture Toughness Of Ceramic Moulds For Investment Casting With Ice Patterns, Qingbin Liu, Ming-Chuan Leu, Von Richards

Mechanical and Aerospace Engineering Faculty Research & Creative Works

Ice patterns can be used to make ceramic investment moulds for metal castings. Owing to the characteristics of ice, the ceramic mould must be made at subzero temperatures and consequently, requires a different formulation than shells built at room temperature. Success of this process depends greatly on the fracture toughness of mould materials. The present paper describes the experimental results of fracture toughness of mould materials processed from different compositions. The Taguchi method was used to reduce the trial runs. The parameters considered included the ratio of fibre containing fused silica and aluminosilicate powders, the volume of binder and the …