Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 12 of 12

Full-Text Articles in Mechanical Engineering

Repetitive Impact Response Of A Beam Structure Subjected To Harmonic Base Excitation, Elizabeth K. Ervin, Jonathan A. Wickert Oct 2007

Repetitive Impact Response Of A Beam Structure Subjected To Harmonic Base Excitation, Elizabeth K. Ervin, Jonathan A. Wickert

Jonathan A. Wickert

This paper investigates the forced response dynamics of a clamped–clamped beam to which a rigid body is attached, and in the presence of periodic or non-periodic impacts between the body and a comparatively compliant base structure. The assembly is subjected to base excitation at specified frequency and acceleration, and the potentially complex responses that occur are examined analytically. The two sets of natural frequencies and vibration modes of the beam-rigid body structure (in its in-contact state, and in its not-in-contact state), are used to treat the forced response problem through a series of algebraic mappings among those states. A modal …


Acoustic Excitation Of Superharmonic Capillary Waves On A Meniscus In A Planar Microgeometry, Jie Xu, Daniel Attinger Oct 2007

Acoustic Excitation Of Superharmonic Capillary Waves On A Meniscus In A Planar Microgeometry, Jie Xu, Daniel Attinger

Daniel Attinger

The effects of ultrasound on the dynamics of an air-water meniscus in a planar microgeometry are investigated experimentally. The sonicated meniscus exhibits harmonic traveling waves or standing waves, the latter corresponding to a higher ultrasound level. Standing capillary waves with subharmonic and superharmonic frequencies are also observed, and are explained in the framework of parametric resonance theory, using the Mathieu equation.


[Ph.D.] Caractérisation Mécanique De Matériaux Fibreux En Vibro-Acoustique, Olivier Doutres Ph.D. Aug 2007

[Ph.D.] Caractérisation Mécanique De Matériaux Fibreux En Vibro-Acoustique, Olivier Doutres Ph.D.

Olivier Doutres Ph.D.

This work deals with modelization and characterization of the mechanical properties of soft fibrous materials used in aeronautic industries. First, the Biot-Allard model and a simplified model dedicated to soft materials are presented. The simplified model, called limp model, assumes that the frame has no bulk stiffness. Being an equivalent fluid model accounting for the the motion of the frame, it has fewer limitations than the usual equivalent fluid model assuming a rigid frame. A criterion is proposed to identify the porous materials for which the limp model can be used : the use of the Biot model is generally …


Intrustive Probe Measurements In A High-Temperature Mach Two Flow, Sonya Renee Nelson Aug 2007

Intrustive Probe Measurements In A High-Temperature Mach Two Flow, Sonya Renee Nelson

Masters Theses

To acquire heat transfer measurements of a high temperature Mach two flow a water-cooled calorimeter was placed in the flow and the water temperature rise was used to calculate the heat transfer rate and the recovery temperature of the gas. In addition, a graphite rod with a stainless steel tube at its core was used to measure the total pressure of the flow. This pressure probe was swept through the flow for two test runs to acquire a stagnation pressure profile of the gas flow. All results were compared to NASA CEA computer simulation code results. The heat transfer and …


Vibration- Based Damage Detection Using Damage Location Vectors, Khaled Faizallah Mostafa Jun 2007

Vibration- Based Damage Detection Using Damage Location Vectors, Khaled Faizallah Mostafa

Archived Theses and Dissertations

No abstract provided.


Design And Characteristics Of A Split Hopkinson Pressure Bar Apparatus, Radek Glaser, Jesse Haines, Christopher Knight May 2007

Design And Characteristics Of A Split Hopkinson Pressure Bar Apparatus, Radek Glaser, Jesse Haines, Christopher Knight

Radek Glaser

A Split Hopkinson Pressure Bar Apparatus, also known as Kolsky Bar that is capable of conducting compressive strain rate testing in the approximate ranges from 50 to 10^4 in/in per second was designed as a part of a Senior Design Project. Generally, this device is similar to that first used by Kolsky in 1949. The design of this device is presented here in two stages: 1. Research, design and manufacturing of the Stress Generating System 2. Experimental Part – Testing of the apparatus to obtain necessary data. The present phase of the design was focused mostly on the stress generating …


Derivation And Application Of A Conserved Orbital Energy For The Inverted Pendulum Bipedal Walking Model, Jerry E. Pratt, Sergey V. Drakunov Apr 2007

Derivation And Application Of A Conserved Orbital Energy For The Inverted Pendulum Bipedal Walking Model, Jerry E. Pratt, Sergey V. Drakunov

Publications

We present an analysis of a point mass, point foot, planar inverted pendulum model for bipedal walking. Using this model, we derive expressions for a conserved quantity, the “Orbital Energy”, given a smooth Center of Mass trajectory. Given a closed form Center of Mass Trajectory, the equation for the Orbital Energy is a closed form expression except for an integral term, which we show to be the first moment of area under the Center of Mass path. Hence, given a Center of Mass trajectory, it is straightforward and computationally simple to compute phase portraits for the system. In fact, for …


Derivation And Application Of A Conserved Orbital Energy For The Inverted Pendulum Bipedal Walking Model, Jerry E. Pratt, Sergey V. Drakunov Mar 2007

Derivation And Application Of A Conserved Orbital Energy For The Inverted Pendulum Bipedal Walking Model, Jerry E. Pratt, Sergey V. Drakunov

Sergey V. Drakunov

We present an analysis of a point mass, point foot, planar inverted pendulum model for bipedal walking. Using this model, we derive expressions for a conserved quantity, the “Orbital Energy”, given a smooth Center of Mass trajectory. Given a closed form Center of Mass Trajectory, the equation for the Orbital Energy is a closed form expression except for an integral term, which we show to be the first moment of area under the Center of Mass path. Hence, given a Center of Mass trajectory, it is straightforward and computationally simple to compute phase portraits for the system. In fact, for …


Vorticity Dynamics And Sound Generation In Two-Dimensional Fluid Flow, Raymond J. Nagem, Guido Sandri, David Uminsky Jan 2007

Vorticity Dynamics And Sound Generation In Two-Dimensional Fluid Flow, Raymond J. Nagem, Guido Sandri, David Uminsky

Mathematics

An approximate solution to the two-dimensional incompressible fluid equations is constructed by expanding the vorticity field in a series of derivatives of a Gaussian vortex. The expansion is used to analyze the motion of a corotating Gaussian vortex pair, and the spatial rotation frequency of the vortex pair is derived directly from the fluid vorticity equation. The resulting rotation frequency includes the effects of finite vortex core size and viscosity and reduces, in the appropriate limit, to the rotation frequency of the Kirchhoff point vortex theory. The expansion is then used in the low Mach number Lighthill equation to derive …


A Fully Lagrangian Numerical Method For Calculating The Dynamics Of Oscillating Micro And Nanoscale Objects Immersed In Fluid, Nicole N. Hashemi, Mark Paul, Javier Alcazar, Raul Radovitzky Jan 2007

A Fully Lagrangian Numerical Method For Calculating The Dynamics Of Oscillating Micro And Nanoscale Objects Immersed In Fluid, Nicole N. Hashemi, Mark Paul, Javier Alcazar, Raul Radovitzky

Nastaran Hashemi

Many micro and nano-technologies rely upon the complicated motion of objects immersed in a viscous fluid. It is often the case that for such problems analytical theory is not available to quantitatively describe and predict the device dynamics. In addition, the numerical simulation of such devices involves moving boundaries and use of the standard Eulerian computational approaches are often difficult to implement. In order to address this problem we use and validate a fully Lagrangian finite element approach that treats the moving boundaries in a natural manner. We validate the method for use in calculating the dynamics of oscillating objects …


Stream Ambient Noise, Spectrum And Propagation Of Sounds In The Goby Padogobius Martensii: Sound Pressure And Particle Velocity, Marco Lugli, Michael L. Fine Jan 2007

Stream Ambient Noise, Spectrum And Propagation Of Sounds In The Goby Padogobius Martensii: Sound Pressure And Particle Velocity, Marco Lugli, Michael L. Fine

Biology Publications

The most sensitive hearing and peak frequencies of courtship calls of the stream goby, Padogobius martensii, fall within a quiet window at around 100Hz in the ambient noise spectrum. Acoustic pressure was previously measured although Padogobius likely responds to particle motion. In this study a combination pressure (p) and particle velocity (u) detector was utilized to describe ambient noise of the habitat, the characteristics of the goby’s sounds and their attenuation with distance. The ambient noise (AN) spectrum is generally similar for p and u (including the quiet window at noisy locations), although the energy distribution of uspectrum is …


Parallel Three-Dimensional Acoustic And Elastic Wave Simulation Methods With Applications In Nondestructive Evaluation, Kevin Edward Rudd Jan 2007

Parallel Three-Dimensional Acoustic And Elastic Wave Simulation Methods With Applications In Nondestructive Evaluation, Kevin Edward Rudd

Dissertations, Theses, and Masters Projects

In this dissertation, we present two parallelized 3D simulation techniques for three-dimensional acoustic and elastic wave propagation based on the finite integration technique. We demonstrate their usefulness in solving real-world problems with examples in the three very different areas of nondestructive evaluation, medical imaging, and security screening. More precisely, these include concealed weapons detection, periodontal ultrasography, and guided wave inspection of complex piping systems. We have employed these simulation methods to study complex wave phenomena and to develop and test a variety of signal processing and hardware configurations. Simulation results are compared to experimental measurements to confirm the accuracy of …