Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2003

Compliant mechanisms

Articles 1 - 6 of 6

Full-Text Articles in Mechanical Engineering

A Closed-Form Dynamic Model Of The Compliant Constant-Force Mechanism Using The Pseudo-Rigid-Body Model, Cameron Boyle Nov 2003

A Closed-Form Dynamic Model Of The Compliant Constant-Force Mechanism Using The Pseudo-Rigid-Body Model, Cameron Boyle

Theses and Dissertations

A mathematical dynamic model is derived for the compliant constant-force mechanism, based on the pseudo-rigid-body model simplification of the device. The compliant constant-force mechanism is a slider mechanism incorporating large-deflection beams, which outputs near-constant-force across the range of its designed deflection. The equation of motion is successfully validated with empirical data from five separate mechanisms, comprising two configurations of compliant constant-force mechanism. The dynamic model is cast in generalized form to represent all possible configurations of compliant constant-force mechanism. Deriving the dynamic equation from the pseudo-rigid-body model is useful because every configuration is represented by the same model, so a …


Design And Analysis Of End-Effector Systems For Scribing On Silicon, Bennion Rhead Cannon Aug 2003

Design And Analysis Of End-Effector Systems For Scribing On Silicon, Bennion Rhead Cannon

Theses and Dissertations

This thesis investigates end-effector systems used in a chemomechanical scribing process. Chemomechanical scribing is a method of patterning silicon to selectively deposit a monolayer of material on the surface of the silicon. This thesis details the development of a unique end-effector for chemomechanical scribing using a compliant mechanism solution. The end-effector is developed to scribe lines that have uniform geometry and produce less chipping on the surface of the silicon. The resulting scribing mechanism is passively controlled, has high lateral stiffness, and low axial stiffness. The mechanism is analyzed using the pseudo-rigid-body model and linear-elastic beam method to determine the …


Analysis And Design Of Surface Micromachined Micromanipulators For Out-Of-Plane Micropositioning, Kimberly A. Jensen Jul 2003

Analysis And Design Of Surface Micromachined Micromanipulators For Out-Of-Plane Micropositioning, Kimberly A. Jensen

Theses and Dissertations

This thesis introduces two ortho-planar MEMS devices that can be used to position microcomponents: the XZ Micropositioning Mechanism and the XYZ Micromanipulator. The displacement and force relationships are presented. The devices were fabricated using surface micromachining processes and the resulting mechanisms were tested. A compliant XYZ Micromanipulator was also designed to reduce backlash and binding. In addition, several other MEMS positioners were fabricated and tested: the Micropositioning Platform Mechanism (MPM), the Ortho-planar Twisting Micromechanism (OTM), and the Ortho-planar Spring Micromechanism (OSM).


Identification Of Macro- And Micro-Compliant Mechanism Configurations Resulting In Bistable Behavior, Brian D. Jensen Jun 2003

Identification Of Macro- And Micro-Compliant Mechanism Configurations Resulting In Bistable Behavior, Brian D. Jensen

Theses and Dissertations

The purpose of this research is to identify the configurations of several mechanism classes which result in bistable behavior. Bistable mechanisms have use in many applications, such as switches, clasps, closures, hinges, and so on. A powerful method for the design of such mechanisms would allow the realization of working designs much more easily than has been possible in the past. A method for the design of bistable mechanisms is especially needed for micro-electro-mechanical systems (MEMS) because fabrication and material constraints often prevent the use of simple, well-known bistable mechanism configurations. In addition, this knowledge allows designers to take advantage …


Development Of In-Plane Compliant Bistable Microrelays, Troy Alan Gomm Jun 2003

Development Of In-Plane Compliant Bistable Microrelays, Troy Alan Gomm

Theses and Dissertations

Bistable microrelays have many possible applications and have the potential to reduce the size, weight, power consumption, and cost of products in which they are used. This research outlines the current state of microrelays, presents three new compliant bistable micromechanisms, and characterizes their performance as microrelays. The characterization includes a treatment of a new force-tester, a preliminary contact resistance study, contact-force measurements, switching time measurements, insertion loss, AC isolation, breakdown voltage, and DC isolation. This document also includes recommendations for further research.


The Pseudo-Rigid-Body Model For Dynamic Predictions Of Macro And Micro Compliant Mechanisms, Scott Marvin Lyon Apr 2003

The Pseudo-Rigid-Body Model For Dynamic Predictions Of Macro And Micro Compliant Mechanisms, Scott Marvin Lyon

Theses and Dissertations

This work discusses the dynamic predictions of compliant mechanisms using the Pseudo-Rigid-Body model (PRBM). In order to improve the number of mechanisms that can be modeled, this research develops and identifies several key concepts in the behavior of beam segments where both ends are fixed to a rigid body (fixed-fixed flexible segments). A model is presented, and several examples are discussed. The dynamic behavior of several compliant segments is predicted using the PRBM and the results are compared to finite element analysis and experimental results. Details are presented as to the transient behavior of a typical uniform rectangular cross section …