Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

2001

Cerium compounds

Articles 1 - 2 of 2

Full-Text Articles in Mechanical Engineering

Increasing Power Density Of Lsgm-Based Solid Oxide Fuel Cells Using New Anode Materials, Kevin Huang, Jen-Hau Wan, John B. Goodenough Jun 2001

Increasing Power Density Of Lsgm-Based Solid Oxide Fuel Cells Using New Anode Materials, Kevin Huang, Jen-Hau Wan, John B. Goodenough

Faculty Publications

Chemical reactions between the superior perovskite oxide-ion conductor Sr- and Mg-doped LaGaO3 (LSGM), CeO2, and NiO have been studied by powder X-ray diffraction. The results showed that an extensive reactivity occurs as a result of La migration driven by a gradient of La chemical activity. La migration across the LSGM/electrode interfaces in a fuel cell leads to the formation of resistive phases at the interface, either LaSrGa3O7 or LaSrGaO4. Use of 40 mol % La2O3 -doped CeO2 as an interlayer between anode and electrolyte as well as in …


Reduced-Temperature Solid Oxide Fuel Cells Fabricated By Screen Printing, Changrong Xia, Fanglin Chen, Meilin Liu Mar 2001

Reduced-Temperature Solid Oxide Fuel Cells Fabricated By Screen Printing, Changrong Xia, Fanglin Chen, Meilin Liu

Faculty Publications

Electrolyte films of samaria-doped ceria (SDC, Sm0.2Ce0.8O1.9) are fabricated onto porous NiO-SDC substrates by a screen printing technique. A cathode layer, consisting of Sm0.5Sr0.5CoO3 and 10 wt % SDC, is subsequently screen printed on the electrolyte to form a single cell, which is tested at temperatures from 400 to 600°C. When humidified (3% H2O) hydrogen or methane is used as fuel and stationary air as oxidant, the maximum power densities are 188 (or 78) and 397 (or 304) mW/cm2 at 500 and 600°C, respectively. Impedance analysis …