Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

CubeSat

Discipline
Institution
Publication Year
Publication

Articles 1 - 21 of 21

Full-Text Articles in Mechanical Engineering

Comparative Analysis Of Command Protocols For Cubesat Data Handling Systems, Roman Dowling May 2024

Comparative Analysis Of Command Protocols For Cubesat Data Handling Systems, Roman Dowling

Mechanical Engineering Undergraduate Honors Theses

Researchers at the University of Arkansas developed ARKSAT-1, a cubic satellite with the purpose of employing an LED with a tracking system to perform spectroscopic measurements of the atmosphere.

The control board of the satellite contained several microcontrollers which worked in concert to collect and manage data. Discussed in this report are the software programs developed for the microcontrollers, dual Arduino MKRZeros, utilized as data repositories and for control of satellite peripherals. The programs discussed in this project include an original existing command-response protocol and an improved batch-command protocol, each with its accompanying data handling and storage system. These programs …


A Systematic Study Into The Design And Utilization Of Burn Wire As A Means Of Tensioning And Releasing Spacecraft Mechanisms Through Applied Joule Heating, Chandler Dye May 2023

A Systematic Study Into The Design And Utilization Of Burn Wire As A Means Of Tensioning And Releasing Spacecraft Mechanisms Through Applied Joule Heating, Chandler Dye

Mechanical Engineering Undergraduate Honors Theses

The joule heating characteristics of Nichrome burn wires, often used as a thermal cutting device in mechanisms designed to fasten and release CubeSat deployables, are examined in the following thesis. Wires ranging from 0.125 inches to 2 inches long, and diameters of 30 Ga and 40 Ga, are investigated through analytical calculations and thermal simulations based on heat transfer due to joule heating, and through physical circuitry-based experiments. The temperature data is used to generate heating curves to predict the time it takes for Nichrome wires to fail under varying testing parameters. This research aims to catalog a series of …


Development Of Mirror Flexures For Use In The Muvi Instrument, Colin W. Harrop Apr 2023

Development Of Mirror Flexures For Use In The Muvi Instrument, Colin W. Harrop

Master's Theses

The Miniaturized Ultraviolet Imager (MUVI), is a compact wide field UV imaging instrument in development at UC Berkeley Space Sciences Laboratory and Cal Poly, San Luis Obispo. MUVI is designed to fit in a 2U CubeSat form factor and provide wide field, high resolution images of the ionosphere at far ultraviolet wavelengths. This thesis details the design and analyses of MUVI’s deployable cover mirror mounting flexures. Three different flexure geometries were evaluated, an optimal candidate was determined based on a number of criteria including isolation of vibration and stress to the mirrors, manufacturability and cost. The design of the flexure …


Compact Electrospray Propulsion Systems For Small Form-Factor Satellites: An Orbital Performance Survey & Platform Design, Alberto Meza Dec 2022

Compact Electrospray Propulsion Systems For Small Form-Factor Satellites: An Orbital Performance Survey & Platform Design, Alberto Meza

Open Access Theses & Dissertations

Over the past decades, small form-factor satellites such as CubeSats have remained as one of the most accessible platforms to reach space for universities, research institutions, private and governmental entities to perform a wide range of missions. This paper presents a survey into the design and implementation of an electrospray rail thruster, to be integrated to the CubeSat platform. The design investigated features propellant tanks for each individual thruster embedded inside the rail of a standard 1U CubeSat. The capabilities of utilizing the electrospray thruster as an attitude & determination control system was also investigated in which, a pointing accuracy …


Failure Mode, Effects And Criticality Analysis Of A Very Low Earth Orbit Cubesat Mission, Robb Christopher Borowicz May 2022

Failure Mode, Effects And Criticality Analysis Of A Very Low Earth Orbit Cubesat Mission, Robb Christopher Borowicz

Mechanical & Aerospace Engineering Theses & Dissertations

When space programs launch vehicles into orbit, multiple failures could arise throughout the mission and corrective actions are often not an option. Applying reliability engineering approaches during the design phase focuses on analyzing risk by anticipating potential failures and mitigating uncertainties in the design. Old Dominion University, in partnership with the U.S. Coast Guard Academy, and the U.S. Air Force Institute of Technology designed and developed a 3U CubeSat mission to validate on-orbit, three space technology payloads. Mission SeaLion will fly as a secondary payload on stage two of Northrop Grumman’s Antares rocket and will be deployed in a very …


Hobby Grade Lithium-Ion Batteries For Spacecraft Applications: Establishing An Automated Electrical Characteristics Testing Procedure For Flight Acceptance Of Non-Space-Grade Small Secondary Batteries, Braidon Hughes Dec 2021

Hobby Grade Lithium-Ion Batteries For Spacecraft Applications: Establishing An Automated Electrical Characteristics Testing Procedure For Flight Acceptance Of Non-Space-Grade Small Secondary Batteries, Braidon Hughes

Graduate Theses and Dissertations

Li-ion batteries are widely used due to the large amount of rechargeable energy they pack into a small, light package. This higher energy density makes Li-ion batteries ideal for small satellite applications, specifically CubeSats. CubeSats have grown in popularity in higher level education due to the National Aeronautics and Space Administration’s implementation of the Cube Satellite Launch Initiative, making it easier and cheaper to conduct small, low orbit missions. Because these CubeSats are occupying the same space as a crewed spacecraft, it is imperative that they are safe. There are numerous reports of Li-ion batteries creating fires that result in …


Standardized 1x6u Cubesat Structure Design, Maximilian H. Brummel Nov 2021

Standardized 1x6u Cubesat Structure Design, Maximilian H. Brummel

Masters Theses

A CubeSat is a small satellite composed of one or more 10cm x 10cm x ~10cm cubes. Sometimes referred to as a “U” as in unit, the cubes can be combined in configurations of 2U, 3U, 6U, and more. CubeSats provide many advantages that larger satellites cannot offer. They are relatively inexpensive and can be fabricated much faster. Small-scale projects that require a fast timeline from conception up to completion are perfect for CubeSats. Furthermore, educational programs use CubeSat projects to teach and prepare students for the satellite industry. Popular configurations for CubeSat are 1U, 3U and 6U where the …


Low-Cost Reaction Wheel Design For Cubesat Applications, Nicholas J. Bonafede Jr. Aug 2020

Low-Cost Reaction Wheel Design For Cubesat Applications, Nicholas J. Bonafede Jr.

Master's Theses

As science instruments on CubeSats become more sensitive to the attitude of the spacecraft, better methods must be employed to provide the accuracy needed to complete the planned mission. While systems that provide the accuracy required are available commercially, these solutions are not cost-effective, do not allow the design to be tailored to a specific mission, and most importantly, do not give students hand-on experience with attitude control actuators. This thesis documents the design, modeling, and simulation of a low-cost, student-fabricated, reaction wheel system for use in 3U CubeSat satellites. The entire design process for the development of this reaction …


Deployable Cover For Cubesat Fuv Imager, Edwin J. Rainville, Patrick J. Rainville, Jeff Wagner Dec 2019

Deployable Cover For Cubesat Fuv Imager, Edwin J. Rainville, Patrick J. Rainville, Jeff Wagner

Mechanical Engineering

The goal is to develop a deployable cover for a far ultraviolet imager cube satellite that will be used to map the earth’s auroras in the ionosphere. The deployable cover is used to protect the Far Ultra-Violet (FUV) sensor and lenses, house two mirrors which are used to filter unwanted light and expose optics when deployed. The deployable cover consists of a door, an actuator, a lockout mechanism, and an “open position” indicator. This project also includes designing a fixture for testing the optical alignment of the deployable cover after launch and during orbital conditions. The subassembly is required to …


Redesign Of Cubesat For Beam Charging, Kuba Preis Jun 2019

Redesign Of Cubesat For Beam Charging, Kuba Preis

Industrial and Manufacturing Engineering

This paper is intended to be a study in the applications of the design freedom granted by additive manufacture in the design of a 1U CubeSat frame. The main loads experienced by a CubeSat are structural (during launch) and thermal (solar radiation). Beam charging is an emerging technology which involves charging a CubeSat using a laser beam. In this paper, a CubeSat frame was redesigned to account for the structural loads induced during launch and the thermal loads induced when beam charging. The thermal, weight, design, and structural requirements for a new CubeSat design were derived. The 1U CubeSat frame …


Development And Environmental Testing Of A Single-Axis Printer Inside A 1u Cubesat For On-Orbit Servicing Repairs In Low Earth Orbit, Perla Rocio Perez Jan 2019

Development And Environmental Testing Of A Single-Axis Printer Inside A 1u Cubesat For On-Orbit Servicing Repairs In Low Earth Orbit, Perla Rocio Perez

Open Access Theses & Dissertations

As additive manufacturing is becoming an established technology in space, new emerging strategies improve the efficiency of the printing processes. Orbital Factory 2 (OF-2) is a small satellite-or CubeSat-developed at the University of Texas at El Paso (UTEP) which launched to space on November 2019. In January 2020, it will be released in low earth orbit (LEO). OF-2 is a 1U (10x10x10cm) CubeSat that carries a one-axis printer experiment as its primary payload. This printer was developed and tested in-house. The experiment focuses on printing electrically conductive ink on a printing circuit board that verifies the conductivity on the trace …


Development Of An Iridium-Ceramic Substrate Catalyst Bed For The Decomposition Of Ionic Green Liquid Monopropellants, Alejandro Andre Vazquez Jan 2019

Development Of An Iridium-Ceramic Substrate Catalyst Bed For The Decomposition Of Ionic Green Liquid Monopropellants, Alejandro Andre Vazquez

Open Access Theses & Dissertations

In an effort to advance green monopropellant propulsion using ionic liquids, the Center for Space Exploration and Technology Research (cSETR) has developed a pellet based catalyst bed for the decomposition of AF-M315E. The present paper will go over some of the fundamental research conducted towards the development of a catalyst bed and some of its applications. Three different catalyst bed designs were produced where each uses a different ceramic substrate material. The three different substrates are aluminum oxide, tungstated zirconia, silicon carbide each coated with iridium as the catalyst material. An experimental setup for testing the catalytic decomposition AF-M315E was …


Fluid Phase Separation Via Nanochannel Array, John Lee May 2018

Fluid Phase Separation Via Nanochannel Array, John Lee

Graduate Theses and Dissertations

Microelectromechanical systems (MEMS) and nanoelectromechanical systems (NEMS) generate ideas and techniques for creating new devices at the micro/nano scale. This dissertation study designed a gas generator system utilizing nanochannels for phase separation that is useful for micro-pneumatic actuators, micro-valves, and micro-pumps. The new gas generator has the potential to be an integral part of a propulsion system for small-scale satellites. Nano/picosatellites have limited orientation capability partly due to the current limitations of microthruster devices. Development of a self-contained micro propulsion system enables dynamic orbital maneuvering of pico- and nano-class satellites.

Additionally, the new gas generator utilizes a high efficiency, green …


Active Permanent Magnet Attitude Control For Cubesats Using Mu-Metal Shielding, Maxwell Martin May 2018

Active Permanent Magnet Attitude Control For Cubesats Using Mu-Metal Shielding, Maxwell Martin

Mechanical Engineering Undergraduate Honors Theses

Cube-Satellites (CubeSats) are nanosatellites composed of cube shaped units, each nominally 10cm to a side and around 1kg in mass. Due to their inherent size and weight limitations, it is often impractical to use conventional attitude, or rotational, control methods such as thrusters on these small satellites. Several methods, including magnetorquer rods and small reaction wheels, are often used instead of traditional methods to work around the size and weight limitations. As a new alternative to these methods, a permanent magnet mounted on a rotatable shaft could be used to achieve attitude control. In much the same way that a …


Software Defined Radio System For Cubesat Communication, Tyler Gardner May 2018

Software Defined Radio System For Cubesat Communication, Tyler Gardner

Undergraduate Honors Capstone Projects

Cube satellites, or CubeSats, are small satellites designed around a base unit cube of 10 cm by 10 cm by 10 cm which is commonly referred to as a one unit, or 1 U, CubeSat. The modular architecture of CubeSats allows multiple 1 U frames to be stacked together to form a larger (1.5U, 2U, usually up to 6U) frame as needed. Because CubeSats are cheaper to develop and deploy in orbit than larger satellites, they have become increasingly common for academic, amateur, commercial, and scientific applications over the past five to ten years. There is potential that CubeSats will …


Attitude Control On So(3) With Piecewise Sinusoids, Shaoqian Wang Jan 2018

Attitude Control On So(3) With Piecewise Sinusoids, Shaoqian Wang

Theses and Dissertations--Mechanical Engineering

This dissertation addresses rigid body attitude control with piecewise sinusoidal signals. We consider rigid-body attitude kinematics on SO(3) with a class of sinusoidal inputs. We present a new closed-form solution of the rotation matrix kinematics. The solution is analyzed and used to prove controllability. We then present kinematic-level orientation-feedback controllers for setpoint tracking and command following.

Next, we extend the sinusoidal kinematic-level control to the dynamic level. As a representative dynamic system, we consider a CubeSat with vibrating momentum actuators that are driven by small $\epsilon$-amplitude piecewise sinusoidal internal torques. The CubeSat kinetics are derived using Newton-Euler's equations of motion. …


A Low Cost Inflatable Cubesat Drag Brake Utilizing Sublimation, Adam Charles Horn Jul 2017

A Low Cost Inflatable Cubesat Drag Brake Utilizing Sublimation, Adam Charles Horn

Mechanical & Aerospace Engineering Theses & Dissertations

The United Nations Inter-Agency Debris Coordination Committee has adopted a 25-year post-mission lifetime requirement for any satellite orbiting below 2000 km in order to mitigate the growing orbital debris threat. Low-cost CubeSats have become important satellite platforms with startling capabilities, but this guideline restricts them to altitudes below 600 km because they remain in orbit too long. In order to enable CubeSat deployments at higher release altitudes, a low-cost, ultra-reliable deorbit device is needed.

This thesis reports on efforts to develop a deployable and passively inflatable drag brake that can deorbit from higher orbital altitudes, thereby complying with the 25-year …


Deployable Antenna For Cubesat, Mackenzie Thomas Lennon, Caleb Andrew Barber, David Matthew Galves Jun 2017

Deployable Antenna For Cubesat, Mackenzie Thomas Lennon, Caleb Andrew Barber, David Matthew Galves

Mechanical Engineering

This project is a proof-of-concept ground model of a large deployable antenna designed for the small space requirements of CubeSats. This small deployment module is designed to fit a 2 m by 1 m reflective antenna inside a storage volume of with the dimensions 20 cm by 20 cm x 40 cm. The reflector will be deployed to a parabolic shape with the goal of modeling the reflector necessary for high frequency communication. Because this module is designed as a proof-of-concept for the deployable parabolic reflector specifically, no electrical components will be incorporated and will just focus on the deployment …


Tesseract, Edgar Uribe, Vanessa Faune Jun 2015

Tesseract, Edgar Uribe, Vanessa Faune

Mechanical Engineering

PolySat is a student-run, Cal Poly research program in which students develop small satellites, known as CubeSats, to be sent into space. Since the start of the program in 2000, PolySat has developed eight 10cm x 10cm x10cm CubeSats. Recently, the team has developed two satellites of double, and triple, that size for NASA-KSC & AI-Solutions and the National Science Foundation. The recent volumetric expansion has been driven by high demand for further satellite functionality, which necessitates large power generation capabilities. To remain competitive in the growing CubeSat industry, PolySat must develop a platform that can provide enough power to …


Compact Deployable Antenna For Cubesat Units, Sarah Bolton, Dominic Doty, Peter Rivera Jan 2015

Compact Deployable Antenna For Cubesat Units, Sarah Bolton, Dominic Doty, Peter Rivera

Mechanical Engineering

CubeSats are an appealing platform for space exploration due to their low build and launch costs. Due to their small size, communication rates are often severely limited, preventing missions beyond low earth orbit. A low cost, high gain, high frequency antenna is needed to extend the capabilities of CubeSats.

The goal of the project was to design and build an axisymmetric parabolic antenna that could be deployed from a 10cm x 10cm x 15cm (1.5U) volume and operate at Ka band frequencies. The design selected consisted of an expanding perimeter truss supporting a tensioned mesh reflector. The perimeter truss was …


Analysis Of Star Identification Algorithms Due To Uncompensated Spatial Distortion, Steven Paul Brätt May 2013

Analysis Of Star Identification Algorithms Due To Uncompensated Spatial Distortion, Steven Paul Brätt

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

With the evolution of spacecraft systems, we see the growing need for smaller, more affordable, and robust spacecrafts that can be jettisoned with ease and sent to sites to perform a myriad of operations that a larger craft would prohibit, or that can be quickly manipulated from performing one task into another. The developing requirements have led to the creation of Nano-Satellites, or CubeSats. The question then remains, how to navigate the expanse of space with such a minute spacecraft? A solution to this is using the stars themselves as a means of navigation. This can be accomplished by measuring …