Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Assessment Of Material State In Composites Using Global Dielectric State Variable, Vamsee Vadlamundi Dec 2019

Assessment Of Material State In Composites Using Global Dielectric State Variable, Vamsee Vadlamundi

Mechanical and Aerospace Engineering Dissertations

Composites are heterogeneous in nature and a fundamental understanding of the material response to applied mechanical, thermal, electrical and other multi-physical fields is required to efficiently design and synthesize the material system and demands attention to long-term behavior in particular. Unlike metals, composites are designed to develop distributed damage and initiation of a single microscopic crack does not individually affect the strength/life of these materials. Therefore, the primary interest is not in single local events but in the process of interaction of multiple events that have a collective global effect on the material behavior. The interaction of these local events …


Adaptive Paddle Board, Alexander Holthaus, Alexander Holthaus, Garrett Holmes, Garett Jones Jun 2019

Adaptive Paddle Board, Alexander Holthaus, Alexander Holthaus, Garrett Holmes, Garett Jones

Mechanical Engineering

This Final Design Review (FDR) document outlines the Adaptive Paddle Board senior project, done by four Mechanical Engineering Students at California Polytechnic State University and provides detail on the project and what the team has accomplished. The goal was to create a universally adaptive paddle board that can be used by the Central California Adaptive Sports Center for a wide range of persons with disabilities. This document highlights current research from patents and existing products, details regarding customer specifications, results from concept generation, the manufacturing and testing that went into the final design, and the process taken to get there. …


Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin Jun 2019

Structural Health Monitoring Of Composite Parts: A Review, Jacob Pessin

Honors Theses

Structural health monitoring has the potential to allow composite structures to be more reliable and safer, then by using more traditional damage assessment techniques. Structural health monitoring (SHM) utilizes individual sensor units that are placed throughout the load bearing sections of a structure and gather data that is used for stress analysis and damage detection. Statistical time based algorithms are used to analyze collected data and determine both damage size and probable location from within the structure. While traditional calculations and life span analysis can be done for structures made of isotropic materials such as steel or other metals, composites …


C6 Wheels, Samuel L. Pizot, Luke Martin, Josh Warner, Jonah Levis Jun 2019

C6 Wheels, Samuel L. Pizot, Luke Martin, Josh Warner, Jonah Levis

Mechanical Engineering

This document details the C6 Wheels project being undertaken for senior design. The objective is to design and manufacture carbon fiber reinforced polymer wheels for the Cal Poly Formula Society of Automotive Engineers (FSAE) team. The wheel shells will be used on FSAE’s competition vehicles. FSAE requested the wheels to improve the handling characteristics of their vehicles by reducing the unsprung and rotational mass. They have attempted carbon fiber wheels previously but have not yet run any on their vehicles. FSAE specifically proposed the design of carbon fiber shells with an aluminum center as opposed to full carbon fiber wheels …


Micromechanics-Enriched Finite Element Modeling Of Composites With Manufacturing Or Service-Induced Defects, Alden S. Hyde May 2019

Micromechanics-Enriched Finite Element Modeling Of Composites With Manufacturing Or Service-Induced Defects, Alden S. Hyde

All Graduate Theses and Dissertations, Spring 1920 to Summer 2023

Composite materials are increasingly used in many industries due to the high strength and low weight properties that they exhibit. Since composites are becoming more popular, they are being used in applications such as aircraft, boats, wind turbine blades, and even sports equipment. Composite behavior is complicated since they are made up of two completely different materials such as strong thin fibers and a relatively weaker resin material that hold the fibers together. It is becoming more important to understand how composites behave in different situations so that equipment designers have reliable material information in order to design safe products …


Characterization Of 3d Printed Pla With The Help Of Mechanical, Di-Electric And X-Ray Diffraction Techniques, Sai Sri Nidhi Munaganuru May 2019

Characterization Of 3d Printed Pla With The Help Of Mechanical, Di-Electric And X-Ray Diffraction Techniques, Sai Sri Nidhi Munaganuru

Mechanical and Aerospace Engineering Theses

Additive manufacturing (AM) revolutionized many industries, i.e., Automotive, Biomedical, Aerospace and Defense. As opposed to traditional manufacturing methods, a part is manufactured layer by layer from 3D CAD models in AM. Though the vision of AM is impressive, there are many challenges that are hindering the widespread use of these complex parts. One of the main challenges is its strength that varies with different manufacturing parameters. We are going to investigate the effect of build parameters on the mechanical, electrical and crystalline properties of the additively manufactured heterogeneous material system. The goal of the thesis is to find a correlation …


Investigation Of Design, Manufacture, Analysis, And Test Of A Composite Connecting Rod Under Compression, Thomas Juhl Rohrbach Mar 2019

Investigation Of Design, Manufacture, Analysis, And Test Of A Composite Connecting Rod Under Compression, Thomas Juhl Rohrbach

Master's Theses

Composite materials hold great potential for the replacement of traditional materials in machines utilized on a daily basis. One such example is within an engine block assembly where massive components inherently reduce the efficiency of the system they constitute. By replacing metal elements such as connecting rods, cylinder caps, or a crank shaft with composite alternatives, a significant increase in performance may be achieved with respect to mechanical strength, thermal stability, and durability, while also reducing mass. Exploration of this technology applied to a connecting rod geometry was investigated through a combination of process development, manufacturing, numerical analysis and testing. …


Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li Jan 2019

Freeform Extrusion Fabrication Of Advanced Ceramics And Ceramic-Based Composites, Wenbin Li

Doctoral Dissertations

"Ceramic On-Demand Extrusion (CODE) is a recently developed freeform extrusion fabrication process for producing dense ceramic components from single and multiple constituents. In this process, aqueous paste of ceramic particles with a very low binder content ( < 1 vol%) is extruded through a moving nozzle to print each layer sequentially. Once one layer is printed, it is surrounded by oil to prevent undesirable water evaporation from the perimeters of the part. The oil level is regulated just below the topmost layer of the part being fabricated. Infrared radiation is then applied to uniformly and partially dry the top layer so that the yield stress of the paste increases to avoid part deformation. By repeating the above steps, the part is printed in a layer-wise fashion, followed by post-processing. Paste extrusion precision of different extrusion mechanisms was compared and analyzed, with an auger extruder determined to be the most suitable paste extruder for the CODE system. A novel fabrication system was developed based on a motion gantry, auger extruders, and peripheral devices. Sample specimens were then produced from 3 mol% yttria stabilized zirconia using this fabrication system, and their properties, including density, flexural strength, Young's modulus, Weibull modulus, fracture toughness, and hardness were measured. The results indicated that superior mechanical properties were achieved by the CODE process among all the additive manufacturing processes. Further development was made on the CODE process to fabricate ceramic components that have external/internal features such as overhangs by using fugitive support material. Finally, ceramic composites with functionally graded materials (FGMs) were fabricated by the CODE process using a dynamic mixing device"--Abstract, page iv.