Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Theses/Dissertations

2014

Masters Theses

Discipline
Institution
Keyword

Articles 1 - 30 of 39

Full-Text Articles in Mechanical Engineering

Validation Of A Modified Parallel Compressor Model For Prediction Of The Effects Of Inlet Swirl On Compressor Performance And Operability, Reggie Floyd Dec 2014

Validation Of A Modified Parallel Compressor Model For Prediction Of The Effects Of Inlet Swirl On Compressor Performance And Operability, Reggie Floyd

Masters Theses

Engine inlet distortion complications have plagued the turbine engine development community for decades, and engineers have developed countless methods to identify and combat the harmful effects of inlet distortion. One such type of distortion that has gained much attention in recent years is known as inlet swirl, which results in a significant flow angularity at the face of the engine. This flow angularity can affect the pressure rise and flow capacity of the fan or compressor, and subsequently affect compressor and engine performance.

Previous modeling and simulation efforts to predict the effect inlet swirl can have on fan and compressor …


Design And Model Of The Frame For Hagrid (Hybrid Array Of Gamma Ray Detectors), Santiago Munoz Dec 2014

Design And Model Of The Frame For Hagrid (Hybrid Array Of Gamma Ray Detectors), Santiago Munoz

Masters Theses

Transfer reactions in inverse kinematics have provided critical information in the study of exotic nuclei. However, transfer reactions with charged particles suffer from poor resolution. The measurement of gamma-rays offers several advantages: they provide not only good resolution in measurements but also other information about the nuclei like lifetimes of unstable states. The combination of these two methods would be the ideal situation to gather information about nuclear structure.

HAGRiD, which stands for The Hybrid Array of Gamma Ray Detectors, is a LaBr3(Ce) [lanthanum bromide crystal with a cerium activator] scintillation array to measure gamma rays from transfer reactions and …


An Experimental Study Of The C-Start Of A Mechanical Fish, Benjamin Kandaswamy Chinna Thambi Nov 2014

An Experimental Study Of The C-Start Of A Mechanical Fish, Benjamin Kandaswamy Chinna Thambi

Masters Theses

The Northern Pike have recorded the highest accelerations for marine propulsors. The mean peak acceleration and velocity for a number of trials were found to be 120 ms-2 and 4 ms-1 respectively (Harper and Blake 1990) for live fish. Here, we emulate this fast-start motion and analyze the performance of the Northern Pike, using a mechanical fish. The mechanical fish was made of a PVC head attached to a spring steel frame with aluminum ribs and a plastic tail. A latex rubber sheet was used as the skin of the fish. The set-up used air bearings for frictionless motion with …


Design Of A Passive Exoskeleton Spine, Haohan Zhang Nov 2014

Design Of A Passive Exoskeleton Spine, Haohan Zhang

Masters Theses

In this thesis, a passive exoskeleton spine was designed and evaluated by a series of biomechanics simulations. The design objectives were to reduce the human operator’s back muscle efforts and the intervertebral reaction torques during a full range sagittal plane spine flexion/extension. The biomechanics simulations were performed using the OpenSim modeling environment. To manipulate the simulations, a full body musculoskeletal model was created based on the OpenSim gait2354 and “lumbar spine” models. To support flexion and extension of the torso a “push-pull” strategy was proposed by applying external pushing and pulling forces on different locations on the torso. The external …


Single-Phase Turbulent Enthalpy Transport, Bradley J. Shields Nov 2014

Single-Phase Turbulent Enthalpy Transport, Bradley J. Shields

Masters Theses

Vapor generation is central to the flow dynamics within fuel injector nozzles. Because the degree of atomization affects engine emissions and spray characteristics, quantification of phase change within diesel fuel injectors is a topic of design interest. Within the nozzle, the large pressure gradient between the upstream and downstream plena induce large velocities, creating separation and further pressure drop at the inlet corner. When local pressure in the throat drops below the fluid vapor pressure, phase change can occur with sufficient time. At the elevated temperatures present in diesel engines, this process can be dependent upon the degree of superheat, …


Development Of A Support Structure For Multi-Rotor Wind Turbines, Gaurav Murlidhar Mate Nov 2014

Development Of A Support Structure For Multi-Rotor Wind Turbines, Gaurav Murlidhar Mate

Masters Theses

The earliest design of a wind power system with multiple rotors on a single support structure dates back to the late 1800s. Such a system called a Multi-Rotor Wind Turbine (MRWT) was proposed by several researchers due to its perceived advantages over a single-rotor wind turbine. As turbine size increases, power produced by a rotor tends to scale up as the square of its diameter, as opposed to rotor weight which varies as its cube. So, several smaller rotors will weigh and cost less than one large rotor producing the same power. MRWTs offer several advantages such as better distribution …


Modeling Dynamic Stall For A Free Vortex Wake Model Of A Floating Offshore Wind Turbine, Evan M. Gaertner Nov 2014

Modeling Dynamic Stall For A Free Vortex Wake Model Of A Floating Offshore Wind Turbine, Evan M. Gaertner

Masters Theses

Floating offshore wind turbines in deep waters offer significant advantages to onshore and near-shore wind turbines. However, due to the motion of floating platforms in response to wind and wave loading, the aerodynamics are substantially more complex. Traditional aerodynamic models and design codes do not adequately account for the floating platform dynamics to assess its effect on turbine loads and performance. Turbines must therefore be over designed due to loading uncertainty and are not fully optimized for their operating conditions. Previous research at the University of Massachusetts, Amherst developed the Wake Induced Dynamics Simulator, or WInDS, a free vortex wake …


Buckling Of Particle-Laden Interfaces, Theo Dias Kassuga Nov 2014

Buckling Of Particle-Laden Interfaces, Theo Dias Kassuga

Masters Theses

We study the buckling of an oil-water interface populated by micron-sized latex particles using a Langmuir trough. We extend pre-existing results to the micron-range with different capillary length and compare the experimental data to the existing theoretical framework. An unexpected trend for the dominant wavelength of buckling is observed, suggesting that there is a transition between regimes in the micron-range. A mechanism for the new regime is proposed. Cascading is reported, as well as novel kinds of transition between wavelengths within the same particle raft. Lastly, the effect of compression on the macroscopic arrangement of particles is investigated, as well …


Design And Control Of A Two-Wheeled Robotic Walker, Airton R. Da Silva Jr. Nov 2014

Design And Control Of A Two-Wheeled Robotic Walker, Airton R. Da Silva Jr.

Masters Theses

This thesis presents the design, construction, and control of a two-wheeled inverted pendulum (TWIP) robotic walker prototype for assisting mobility-impaired users with balance and fall prevention. A conceptual model of the robotic walker is developed and used to illustrate the purpose of this study. A linearized mathematical model of the two-wheeled system is derived using Newtonian mechanics. A control strategy consisting of a decoupled LQR controller and three state variable controllers is developed to stabilize the platform and regulate its behavior with robust disturbance rejection performance. Simulation results reveal that the LQR controller is capable of stabilizing the platform and …


Ubot-7: The Design Of A Compliant Dexterous Mobile Manipulator, Jonathan Cummings Nov 2014

Ubot-7: The Design Of A Compliant Dexterous Mobile Manipulator, Jonathan Cummings

Masters Theses

This thesis presents the design of uBot-7, the latest version of a dexterous mobile manipulator. This platform has been iteratively developed to realize a high performance-to-cost dexterous whole body manipulator with respect to mobile manipulation. The semi-anthropomorphic design of the uBot is a demonstrated and functional research platform for developing advanced autonomous perception, manipulation, and mobility tasks. The goal of this work is to improve the uBot’s ability to sense and interact with its environment in order to increase the platforms capability to operate dexterously, through the incorporation of joint torque feedback, and safely, through the implementation of passive and …


Were Neandertal Humeri Adapted For Spear Thrusting Or Throwing? A Finite Element Study, Michael Anthony Berthaume Nov 2014

Were Neandertal Humeri Adapted For Spear Thrusting Or Throwing? A Finite Element Study, Michael Anthony Berthaume

Masters Theses

An ongoing debate concerning Neandertal ecology is whether or not they utilized long range weaponry. The anteroposteriorly expanded cross-section of Neandertal humeri have led some to argue they thrusted their weapons, while the rounder cross-section of Late Upper Paleolithic modern human humeri suggests they threw their weapons. We test the hypothesis that Neandertal humeri were built to resist strains engendered by thrusting rather than throwing using finite element models of one Neandertal, one Early Upper Paleolithic (EUP) human and three recent human humeri, representing a range of cross-sectional shapes and sizes. Electromyography and kinematic data and articulated skeletons were used …


New Generator Control Algorithms For Smart-Bladed Wind Turbines To Improve Power Capture In Below Rated Conditions, Bryce B. Aquino Nov 2014

New Generator Control Algorithms For Smart-Bladed Wind Turbines To Improve Power Capture In Below Rated Conditions, Bryce B. Aquino

Masters Theses

With wind turbines growing in size, operation and maintenance has become a more important area of research with the goal of making wind energy more profitable. Wind turbine blades are subjected to intense fluctuating loads that can cause significant damage over time. The need for advanced methods of alleviating blade loads to extend the lifespan of wind turbines has become more important as worldwide initiatives have called for a push in renewable energy. An area of research whose goal is to reduce the fatigue damage is smart rotor control. Smart bladed wind turbines have the ability to sense aerodynamic loads …


The Optimization Of Offshore Wind Turbine Towers Using Passive Tuned Mass Dampers, Onur Can Yilmaz Aug 2014

The Optimization Of Offshore Wind Turbine Towers Using Passive Tuned Mass Dampers, Onur Can Yilmaz

Masters Theses

Increasing energy demand and carbon emissions have driven the development of alternative energy solutions. One promising technology is wind energy. Wind energy technology developments has advanced substantially since the 1980s. Offshore wind turbines have become a major research focus, due to the promising offshore wind resource. However, challenges in offshore wind energy have arisen due to the additional wave loading and strong wind loads. Structural control systems have been implemented and researched in order to decrease dynamic response of these systems. The previous studies were successful at decreasing fatigue loads in the tower and support structure of offshore wind turbines. …


Cfd Simulation Of The Flow Around Nrel Phase Vi Wind Turbine, Yang Song Aug 2014

Cfd Simulation Of The Flow Around Nrel Phase Vi Wind Turbine, Yang Song

Masters Theses

The simulation of the turbulent and potentially separating flow around a rotating, twisted, and tapered airfoil is a challenging task for CFD simulations. This thesis describes CFD simulations of the NREL Phase VI turbine that was experimentally characterized in the 24.4m X 36.6m NREL/NASA Ames wind tunnel. All computations in this research are performed on the experimental base configuration of 0o yaw angle, 3o tip pitch angle, and a rotation rate of 72 rpm. The significance of specific mesh resolution regions to the accuracy of the CFD prediction is discussed. The ability of CFD to capture bulk quantities, …


Kinetics Of Aluminization And Homogenization In Wrought H-X750 Nickel-Base Superalloy, Sean Reilly Aug 2014

Kinetics Of Aluminization And Homogenization In Wrought H-X750 Nickel-Base Superalloy, Sean Reilly

Masters Theses

In sub-millimeter sheets of wrought H-X750 Nickel-base superalloy, aluminum-rich coatings are bonded to matrix with a vapor phase aluminization process. If an appropriate amount of aluminum is bonded to matrix with homogenization treatment, the resulting diffusion couple will diffuse into coherent (g/g’) heterogeneous phases creating matrix that is both precipitation and solid solution strengthened.

The diffusional mechanisms for solid solution mass transport involved with the growth and dispersion of bonded aluminum-rich coatings in the aluminization process only differ from the no external mass flow homogenization process with annealing treatment in that the boundary conditions are different. In each case these …


A Consistent Algorithm For Implementing The Space Conservation Law, Venkata Pavan Pillalamarri Narasimha Rao Aug 2014

A Consistent Algorithm For Implementing The Space Conservation Law, Venkata Pavan Pillalamarri Narasimha Rao

Masters Theses

Fluid flows occurring in moving and/or deforming environments are influenced by the transient nature of their containment. In Computational Fluid Dynamics (CFD), simulating such flow fields requires effort to maintain the geometric integrity of the transient flow domain. Convective fluxes in such domains are evaluated with respect to the motion of the boundaries of the control volume. These simulations demand conservation of space in addition to the conservation of mass, momentum and energy as the solution continues in time.

The Space Conservation Law in its continuous form can be inferred by using the rules of fundamental calculus. However, implementing it …


Measurement And Verification - Retro-Commissioning Of A Leed Gold Rated Building Through Means Of An Energy Model: Are Aggressive Energy Simulation Models Reliable?, Justin M. Marmaras Aug 2014

Measurement And Verification - Retro-Commissioning Of A Leed Gold Rated Building Through Means Of An Energy Model: Are Aggressive Energy Simulation Models Reliable?, Justin M. Marmaras

Masters Theses

During the construction of the new 3 story, 25,000+ square foot police station, a decision was made to participate in the LEED program to ensure the building had low operating costs, reduced emissions, conserved water and overall energy. The design of the building includes a primary-secondary ground source heat pump (GSHP) loop, a Dedicated Outside Air System (DOAS) with Energy Recovery Ventilation (ERV) wheel, all controlled by CO2 monitoring through Demand Control Ventilation (DCV) to supply heat pumps located in each space; all monitored by a Building Automation System (BAS).

The building’s future energy performance was predicted through an energy …


Design And Fabrication Of A Low-Cost Turbine Engine Component Testbed (Tect), Joshua A. Hartman Aug 2014

Design And Fabrication Of A Low-Cost Turbine Engine Component Testbed (Tect), Joshua A. Hartman

Masters Theses

With gas turbine engine testing becoming very expensive because of the increasing complexity involved with the engine, engine subsystems, and test support systems, a low-cost Turbine Engine Component Testbed (TECT) is proposed. This engine build is given the designation J1-H-02. In the present study, a small augmented gas turbine engine (GTE) is constructed. The TECT engine is built with modularity as a key design consideration to allow for flame-tube patterns and augmentor sections to be changed quickly for combustion experiments that have gained impetus due to combustion anomalies/instabilities inherent with future military engine augmentors. This testbed allows for an effective …


Neutron Imaging Of Lithium (Li) Coolants Inside High Temperature Niobium (Nb) Heat Pipes, Brad Harrison Hight May 2014

Neutron Imaging Of Lithium (Li) Coolants Inside High Temperature Niobium (Nb) Heat Pipes, Brad Harrison Hight

Masters Theses

Lithium (Li) behavior inside a high temperature Nb-Li leading edge heat pipe was successfully imaged under induction heating operation via neutron imaging. Startup and cool-down operations gave visual confirmation of bulk Li movement using both gravity assisted and inverted operating orientations. The pipe was imaged during an operation cycle from ambient conditions, heated to a steady state temperature of 908.8 0C, and allowed to cool below 200°C. The experiment was performed at the National Institute of Standards and Technology (NIST) in Gaithersburg, Maryland, and at the Oak Ridge National Laboratory (ORNL) in Oak Ridge, Tennessee.

Tomographic images …


Rotordynamic Analysis Of A Two-Pole Synchronous Motor With Sleeve And Pressure Dam Bearings, Justin Matthew Garrard May 2014

Rotordynamic Analysis Of A Two-Pole Synchronous Motor With Sleeve And Pressure Dam Bearings, Justin Matthew Garrard

Masters Theses

A two-pole synchronous motor was recently rewound for the von Karman Gas Dynamics facility at Arnold Engineering Development Complex, Arnold Air Force Base, Tennessee. After installing the rewound rotor, unexpected vibration amplitudes were recorded during motor checkouts. To resolve this issue, an investigation was initiated to investigate the causes of the vibration issues. The investigation discovered that the original design used sleeve bearings rather than pressure dam bearings. A study was formed to determine the effect of changing the pressure dam bearings back to sleeve bearings. Because only one spare bearing shell existed, the bearing with the highest vibration amplitudes …


Simulating High Flux Isotope Reactor Core Thermal-Hydraulics Via Interdimensional Model Coupling, Adam Ross Travis May 2014

Simulating High Flux Isotope Reactor Core Thermal-Hydraulics Via Interdimensional Model Coupling, Adam Ross Travis

Masters Theses

A coupled interdimensional model is presented for the simulation of the thermal-hydraulic characteristics of the High Flux Isotope Reactor core at Oak Ridge National Laboratory. The model consists of two domains—a solid involute fuel plate and the surrounding liquid coolant channel. The fuel plate is modeled explicitly in three-dimensions. The coolant channel is approximated as a two-dimensional slice oriented perpendicular to the fuel plate’s surface. The two dimensionally-inconsistent domains are linked to one another via interdimensional model coupling mechanisms. The coupled model is presented as a simplified alternative to a fully explicit, fully three-dimensional model. Involute geometries were constructed in …


Formulation And Experimental Verification Of Alternate Calibration Techniques Of The Temperature Dependent Response Of Phosphor Fluorescence, Kelsey Michele Winstead May 2014

Formulation And Experimental Verification Of Alternate Calibration Techniques Of The Temperature Dependent Response Of Phosphor Fluorescence, Kelsey Michele Winstead

Masters Theses

The overall goal of this work is to provide an alternative approach to the thermographic phosphor (TP) time constant calibration method for temperature recovery. In this work two techniques are proposed that retain the pulsed source input used in the standard TP time constant calibration approach but reinterpret the phosphor response taken a fixed distance such that the single-exponential decay assumption is removed. The methods do not require knowledge of key parameters prior to data processing, nor do they involve complicated numerical schemes that attempt to fit data in the low signal-to-noise region of the phosphor response. The approaches do …


Thermal Response Characterization And Low Fluid Velocity Measurements Using Specialized In-Situ Thermocouples Via The Loop Current Step Response Method, Alexander Hashem Hashemian May 2014

Thermal Response Characterization And Low Fluid Velocity Measurements Using Specialized In-Situ Thermocouples Via The Loop Current Step Response Method, Alexander Hashem Hashemian

Masters Theses

In this study, a specialized balanced-leads thermocouple was developed to perform in-situ thermal response characterization via the LCSR test method. Thermal response characterization of installed thermocouples is essential in order to obtain accurate positional temperature data in rapid transient applications. An analytical model is presented that fully describes the thermocouple system based on a first-principles approach to the heat transfer physics of the sensor. In conjunction with the LCSR test, the full model presented yields quantifiable characterization parameters useful for determining accurate positional temperature data. It is necessary to employ a balanced-leads thermocouple for this experimental procedure in order to …


Simulation Of An Intake Manifold Pre-Heater For Cold Diesel Engine Startup, Patrick K. Kreun Apr 2014

Simulation Of An Intake Manifold Pre-Heater For Cold Diesel Engine Startup, Patrick K. Kreun

Masters Theses

Ensuring consistent, reliable diesel engine startups in cold temperatures is of utmost importance in a number of applications. Under extreme temperatures, the use of glow plugs is complemented by intake manifold heaters. In these, the energy released from combustion increases the intake air temperature before the air enters the main combustion chamber. Since the process also alters the stoichiometry of the fuel-air mixture at the intake ports, the preheater operation must be optimized in order to guarantee successful and reliable in-cylinder combustion during engine startups. This paper describes the development of an intake manifold model incorporating an air pre-heater for …


Analytical Performance Evaluation Of Thermoelectric Modules Using Effective Material Properties, Sean Lwe Leslie Weera Apr 2014

Analytical Performance Evaluation Of Thermoelectric Modules Using Effective Material Properties, Sean Lwe Leslie Weera

Masters Theses

Designers often face the predicament of non-standardized forms of performance data provided by thermoelectric module manufacturers. Other than experimental means the only method to evaluate the performance of a product would be through analytical modeling using material properties that are usually undisclosed and unknown. This work studies the theoretical approach of obtaining such material properties using the maximum operating parameters reported by the manufacturers. These values are then analytically employed to evaluate the performances of these thermoelectric modules. Experimental means are also devised and carried out on these test samples to validate the integrity of the results. Three-way comparisons between …


Effect Of Stress Concentrations On Fatigue Of Composite And Metallic Structures, Ross Henry Falen Jan 2014

Effect Of Stress Concentrations On Fatigue Of Composite And Metallic Structures, Ross Henry Falen

Masters Theses

"The complex shapes of hydrokinetic turbine blades can include part features such as a fillet, step, or hole. Situations can arise where two part features, such as a hole and a fillet, may be in close proximity which can introduce stress concentrations within the blade structure, adversely affecting the structure's life. Because the interaction between the part features isn't well known, fatigue data is needed to determine the proper analysis.

In this thesis, two separate topics are discussed and investigated. The first topic deals with stress concentrations in hydrokinetic turbine blades. Several blade designs were tested and improved upon to …


Characterization Of 304l Stainless Steel By Means Of Minimum Input Energy On The Selective Laser Melting Platform, Ben Brown Jan 2014

Characterization Of 304l Stainless Steel By Means Of Minimum Input Energy On The Selective Laser Melting Platform, Ben Brown

Masters Theses

"Developing parameter sets for new materials on the Selective Laser Melting (SLM) platform has traditionally been done through the use of single line processing windows and a basic design of experiments (DOE) which would include varying machine parameters to maximize density. This study expands the traditional method by determining the main effects statistically for density, allowing for a more in depth analysis wherein the experimental results are statistically correlated to the variable machine parameters used. With this analysis, parameter optimization with respect to achieving near full density, while also considering build rates, can be performed. New parameters for 304L stainless …


Fabrication Of Out-Of-Autoclave Bismaleimide Based Composite Laminates With Embedded Fiber Optic Sensors, Sudharshan Anandan Jan 2014

Fabrication Of Out-Of-Autoclave Bismaleimide Based Composite Laminates With Embedded Fiber Optic Sensors, Sudharshan Anandan

Masters Theses

"Composites are becoming the material of choice in applications where weight savings are critical, like aerospace structures. The common composites used are- Carbon/Epoxy and Carbon/Bismaleimide (BMI). BMI based systems are preferred in applications which involve operating temperatures higher than conventional epoxies. Carbon/BMI laminates are traditionally fabricated in an autoclave, which is associated with high operating costs. In this work, a low cost out of autoclave (OOA) process is evaluated. It is desirable to have BMI OOA prepreg systems cure at reasonably low temperatures with sufficient degree of cure and green strength to maintain rigidity for subsequent freestanding post cure Carbon/BMI …


Numerical Analysis Of Thermal Stress And Deformation In Multi-Layer Laser Metal Deposition Process, Heng Liu Jan 2014

Numerical Analysis Of Thermal Stress And Deformation In Multi-Layer Laser Metal Deposition Process, Heng Liu

Masters Theses

"Direct metal deposition (DMD) has gained increasing attention in the area of rapid manufacturing and repair. It has demonstrated the ability to produce fully dense metal parts with complex internal structures that could not be achieved by traditional manufacturing methods. However, this process involves extremely high thermal gradients and heating and cooling rates, resulting in residual stresses and distortion, which may greatly affect the product integrity. The purpose of this thesis is to study the features of thermal stress and deformation involved in the DMD process. Utilizing commercial finite element analysis (FEA) software ABAQUS, a 3-D, sequentially coupled, thermo-mechanical model …


Machinability Improvement During High-Speed End-Milling Of Inconel 718 Alloy, Chukwujekwu Nnadi Jan 2014

Machinability Improvement During High-Speed End-Milling Of Inconel 718 Alloy, Chukwujekwu Nnadi

Masters Theses

“This thesis presents the results of the experimental investigation of the effects of machining parameters (spindle speed and feedrate) and cooling strategies [Minimum Quantity Lubrication (MQL), Cryogenic Liquid Nitrogen (LN2), and combined (MQL+LN2)] on cutting force components, cutting temperature, tool wear and surface roughness during high-speed slot end-milling of Inconel 718 alloy. In addition, a comparative evaluation of the three cooling strategies was conducted for cutting force components, surface roughness and residual stresses. All end-milling experiments were conducted on a Cincinnati Milacron Vertical Machining center (VMC), using a 0.5 inch (12.7 mm) diameter, 0.03 inch (0.762 …