Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 5 of 5

Full-Text Articles in Mechanical Engineering

Defect Detection In Railroad Tapered-Roller Bearings Using Vibration Analysis Techniques, Iris L. Alvarado Dec 2012

Defect Detection In Railroad Tapered-Roller Bearings Using Vibration Analysis Techniques, Iris L. Alvarado

Theses and Dissertations - UTB/UTPA

Derailments can often lead to great damage, loss of lives, and massive costs associated with the railroad infrastructure. A significant cause of derailments is premature bearing failure, and therefore bearing condition-monitoring systems that can detect developing defects are of great importance. Based on an investigation conducted at the University of Texas-Pan American on the development of a vibration and temperature monitoring system, an algorithm is devised utilizing various vibration analysis techniques. The proposed algorithm determines whether a bearing is defective, the type of defect present, the defective component (i.e. cup, cone, or roller), and the size of the defect. Speed-dependent …


Efficient Characterization Of Structural Dynamic Responses Under Uncertainties: From Order-Reduced Simulation To Data-Driven Emulation, Zeping Xia Aug 2012

Efficient Characterization Of Structural Dynamic Responses Under Uncertainties: From Order-Reduced Simulation To Data-Driven Emulation, Zeping Xia

Master's Theses

The efficiency of sampling remains as one of the major challenges for uncertainty analysis in structural dynamics. In the context of numerical experiments, this difficulty primarily lies in the fact that every single run of a numerical model, which usually is of large scale in modern engineering practice, would be expensive in terms of CPU times and memories. Nonetheless, understanding and predicting dynamic characteristics of structural systems with uncertainties is important for structural design, assessment and control. In order to develop fast and economical sampling techniques for characterizing structural dynamics, we explored two categories of methods from two opposite direction: …


Shock And Vibration Isolation System For Ambulatory And Litter Patients In Ground And Air Medical Transport, Mohamad R. Hachem May 2012

Shock And Vibration Isolation System For Ambulatory And Litter Patients In Ground And Air Medical Transport, Mohamad R. Hachem

UNLV Theses, Dissertations, Professional Papers, and Capstones

This project explored the effectiveness of seat and litter air bladder technologies in reducing patient exposure to whole body shock and vibration during ground borne and airborne medical transport. Several seat and litter air bladder configurations were examined during field tests in a U.S. Army RG-33 MRAP ambulance and a U.S. Army HH-60M Black Hawk helicopter. The MRAP field tests were conducted at Ft. Detrick, Maryland. The Black Hawk field tests were conducted at Ft. Rucker, Alabama.

During the field tests, tri-axial vibration signals were recorded on a 16-channel CoCo90 Data Logger/Frequency Analyzer and then post processed in the laboratory …


Dynamic Characterization Of Vocal Fold Virbrations, Zhenyi Wei Jan 2012

Dynamic Characterization Of Vocal Fold Virbrations, Zhenyi Wei

LSU Doctoral Dissertations

An emerging trend among voice specialists is the use of quantitative protocols for the diagnosis and treatment of voice disorders. Vocal fold vibrations are directly related to voice quality. This research is devoted to providing an objective means of characterizing these vibrations. Our goal is to develop a dynamic model of vocal fold vibration, and map the parameter space of the model to a class of voice disorders; thus, furthering the assessment and diagnosis of voice disorder in clinical settings.

To this end, this dissertation introduces a new seven-mass biomechanical model for the vibration of vocal folds. The model is …


Optimal Actuation In Active Vibration Control Using Pole-Placement, Carla Ann Guzzardo Jan 2012

Optimal Actuation In Active Vibration Control Using Pole-Placement, Carla Ann Guzzardo

LSU Doctoral Dissertations

The purpose of this study was to find and demonstrate a method of optimal actuation in a mechanical system to control its vibration response. The overall aim is to develop an active vibration control method with a minimum control effort, allowing the smallest actuators and lowest control input. Mechanical systems were approximated by discrete masses connected with springs and dampers. Both numerical and analytical methods were used to determine the optimum force selection vector, or input vector, to accomplish the pole placement, finding the optimal location of actuators and their relative gain so that the control effort is minimized. The …