Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 13 of 13

Full-Text Articles in Mechanical Engineering

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough May 2024

The Analysis Of Mechanical Exfoliation Of Graphene For Various Fabrication And Automation Techniques, Lance Yarbrough

Mechanical Engineering Undergraduate Honors Theses

Mechanical Exfoliation of Graphene is an often-overlooked portion of the fabrication of quantum devices, and to create more devices quickly, optimizing this process to generate better flakes is critical. In addition, it would be valuable to simulate test pulls quickly, to gain insight on flake quality of various materials and exfoliation conditions. Physical pulls of graphene at various temperatures, pull forces, and pull repetitions were analyzed and compared to the results of ANSYS simulations, solved for similar results. Using ANSYS’ ability to predict trends in exfoliations, flake thickness and coverage using stress and deflection analyses were investigated. Generally, both strongly …


Hobby Grade Lithium-Ion Batteries For Spacecraft Applications: Establishing An Automated Electrical Characteristics Testing Procedure For Flight Acceptance Of Non-Space-Grade Small Secondary Batteries, Braidon Hughes Dec 2021

Hobby Grade Lithium-Ion Batteries For Spacecraft Applications: Establishing An Automated Electrical Characteristics Testing Procedure For Flight Acceptance Of Non-Space-Grade Small Secondary Batteries, Braidon Hughes

Graduate Theses and Dissertations

Li-ion batteries are widely used due to the large amount of rechargeable energy they pack into a small, light package. This higher energy density makes Li-ion batteries ideal for small satellite applications, specifically CubeSats. CubeSats have grown in popularity in higher level education due to the National Aeronautics and Space Administration’s implementation of the Cube Satellite Launch Initiative, making it easier and cheaper to conduct small, low orbit missions. Because these CubeSats are occupying the same space as a crewed spacecraft, it is imperative that they are safe. There are numerous reports of Li-ion batteries creating fires that result in …


Designing Cryogenic Strain Device For 2d Materials, Jake Carter May 2021

Designing Cryogenic Strain Device For 2d Materials, Jake Carter

Mechanical Engineering Undergraduate Honors Theses

The Churchill lab working within the Physics Department at the University of Arkansas is working to create important quantum states including weak topological insulators (TIs) through the use of symmetry engineering and topological electronic states in two-dimensional (2D) crystals of WHM materials. Experimental results of these topological states have been obstructed due to the difficulty to perform controlled in situ strain. This project strives to create a mount to utilize a piezoelectric nanopositioner within cryostats achieving an in situ strain that creates the quantum states the lab is looking to observe. This report also examines the necessary equations to determine …


Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins May 2021

Design And Control Of A Peristaltic Pump To Simulate Left Atrial Pressure In A Conductive Silicone Model, Jeremy Collins

Mechanical Engineering Undergraduate Honors Theses

According to the CDC, atrial fibrillation is responsible for more than 454,000 hospitalizations and approximately 158,000 deaths per year. A common treatment for atrial fibrillation is catheter ablation, a process in which a long flexible tube is guided through the femoral artery and to the source of arrhythmia in the heart, where it measures the electrical potential at various locations and converts problematic heart tissue to scar tissue via ablation. This paper details the design and control of a low-cost ($400) peristaltic pump system using repetitive control to replicate blood pressure in the left atrium in a conductive silicone model …


Construction Of A Hyperspectral Imager Using 3d-Printed And Off-The-Shelf Components, Joshua Moorhouse May 2020

Construction Of A Hyperspectral Imager Using 3d-Printed And Off-The-Shelf Components, Joshua Moorhouse

Mechanical Engineering Undergraduate Honors Theses

The Arkansas Center for Space and Planetary Sciences is working in collaboration with the Mechanical Engineering department to create a relatively cheap and modifiable hyperspectral imager. It is constructed using 3D-printed and off-the-shelf components from Edmund Optics and Amazon. The iteration created in this paper delivers spectrograms in the visible spectrum. The long-term goals of the camera are to create hyperspectral images from these spectrograms and to advance the imager into the infrared and near-infrared spectra. This imager is being developed to be used in the Arkansas Center for Space and Planetary Sciences environmental test chambers to further the scientific …


Microextrusion 3d Printing Of Optical Waveguides And Microheaters, Edidiong Nseowo Udofia Aug 2019

Microextrusion 3d Printing Of Optical Waveguides And Microheaters, Edidiong Nseowo Udofia

Graduate Theses and Dissertations

The drive for smaller and more compact devices presents several challenges in materials and fabrication strategies. Although photolithography is a well-developed method for creating microdevices, the disparate requirements in fabrication strategies, material choices, equipment and process complexities have limited its applications. Microextrusion printing (μEP) provides a promising alternative for microfabrication. Compared to the traditional techniques, the attractions lie in the wide range of printable material choice, greater design freedom, fewer processing steps, lower cost for customized production, and the plurality of compatible substrates. However, while extrusion-based 3D printing processes have been successfully applied at the macroscale, this seeming simplicity belies …


Development Of A Ground-Based Aerial-Tracking Instrument For Open-Path Spectroscopy To Monitor Atmospheric Constituents, Haden Hodges Aug 2019

Development Of A Ground-Based Aerial-Tracking Instrument For Open-Path Spectroscopy To Monitor Atmospheric Constituents, Haden Hodges

Civil Engineering Undergraduate Honors Theses

A ground-based aerial-tracking instrument, known as the Ground Tracker, designed to provide spectral data to quantify greenhouse gases is under development. The Ground Tracker includes an Optical System including a high power rifle scope, video camera, and spectrometer used to locate an active light source from the Emitter, and collect spectral data by utilizing an actuating mirror. The implementation of this instrument could be made low cost by utilizing existing weather balloon infrastructure to allow the Emitter to be placed into the lower stratosphere. The recovery of the emitter will be possible by tracking the GPS coordinates. Weather balloon instrument …


Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller May 2019

Predicting The Mechanical Properties Of Nanocomposites Reinforced With 1-D, 2-D And 3-D Nanomaterials, Scott Edward Muller

Graduate Theses and Dissertations

Materials with features at the nanoscale can provide unique mechanical properties and increased functionality when included as part of a nanocomposite. This dissertation utilizes computational methods at multiple scales, including molecular dynamics (MD) and density functional theory (DFT), and the coupled atomistic and discrete dislocation multiscale method (CADD), to predict the mechanical properties of nanocomposites possessing nanomaterials that are either 1-D (carbyne chains), 2-D (graphene sheets), or 3-D (Al/amorphous-Si core-shell nanorod).

The MD method is used to model Ni-graphene nanocomposites. The strength of a Ni-graphene nanocomposite is found to improve by increasing the gap between the graphene sheet and a …


Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo May 2019

Construction Of A Hyperspectral Camera Using Off-The-Shelf Parts And 3d-Printed Parts, Connor Heo

Mechanical Engineering Undergraduate Honors Theses

The Arkansas Center for Space and Planetary Sciences (ACSPS) is working together with the Mechanical Engineering Department to build a modifiable camera with 3D-printed parts and off-the-shelf parts (sourced from Edmund Optics and Amazon). The design is to be readily changeable, primarily with the 3D printed parts, as to accommodate new ideas and functionalities in the future. Ultimately, the camera should be relatively cheap while maintaining functionality for proposed use cases. Earlier versions of the design will be tested extensively and rapidly updated in the ACSPS labs with benchtop testing. This will involve subjects with both visible and infrared emissions, …


Methods To Remotely Eliminate Biofilm From Medical Implants Using 2.4 Ghz Microwaves, Brett Glenn May 2019

Methods To Remotely Eliminate Biofilm From Medical Implants Using 2.4 Ghz Microwaves, Brett Glenn

Mechanical Engineering Undergraduate Honors Theses

Infections associated with biofilm growth are usually challenging to eradicate due to their high tolerance toward antibiotics [11, 12]. Biofilms often form on the inert surfaces of medically implanted devices [13]. No matter the sophistication, microbial infections can develop on all medical devices and tissue engineering constructs [12]. Related infections lead to 2 million cases annually in the U.S., costing the healthcare system over $5 billion in additional healthcare expenses [12].

Novel solutions to biofilm’s microbial colonization span the spectrum of engineering and science disciplines. Yet a practical solution still does not exist. The research presented here will explore a …


Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill May 2016

Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill

Physics Undergraduate Honors Theses

Plasmonic nanostructures have been shown to act as optical antennas that enhance optical devices due to their ability to focus light below the diffraction limit of light and enhance the intensity of the incident light. This study focuses on computational electromagnetic (CEM) analysis of two devices: 1) GaAs photodetectors with Au interdigital electrodes and 2) Au thin-film microstructures. Experiments showed that the photoresponse of the interdigital photodetectors depend greatly on the electrode gap and the polarization of the incident light. Smaller electrode gap and transverse polarization give rise to a larger photoresponse. It was also shown that the response from …


Particle Image Velocimetry Design & Installation, Zach Ritchie May 2016

Particle Image Velocimetry Design & Installation, Zach Ritchie

Mechanical Engineering Undergraduate Honors Theses

This work will mainly focus on the design, construction, and installation of the Particle Image Velocimetry (PIV) system in the Chemical Hazards Research Center wind tunnel. The PIV system utilizes a Class IV (double pulsed) laser, optics to produce a light sheet, timing circuitry, and a high-resolution camera (with buffered output) to measure a system’s velocity (two-dimensional) field by determining the displacement of particles over the time between laser pulses. For maximum mobility and functionality, the PIV system was installed in the center of the tunnel on a moveable cart with the laser and camera mounted to an adjustable support. …


Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill May 2016

Optical Analysis And Fabrication Of Micro And Nanoscale Plasmonically Enhanced Devices, Avery M. Hill

Mechanical Engineering Undergraduate Honors Theses

Plasmonic nanostructures have been shown to act as optical antennas that enhance optical devices due to their ability to focus light below the diffraction limit of light and enhance the intensity of the incident light. This study focuses on computational electromagnetic (CEM) analysis of two devices: 1) GaAs photodetectors with Au interdigital electrodes and 2) Au thin-film microstructures. Experiments showed that the photoresponse of the interdigital photodetectors depend greatly on the electrode gap and the polarization of the incident light. Smaller electrode gap and transverse polarization give rise to a larger photoresponse. It was also shown that the response from …