Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 19 of 19

Full-Text Articles in Mechanical Engineering

Capabilities Of Sintered Silver As A High Temperature Packaging Material, Bakhtiyar Mohammad Nafis Dec 2023

Capabilities Of Sintered Silver As A High Temperature Packaging Material, Bakhtiyar Mohammad Nafis

Graduate Theses and Dissertations

With electrification progressing across many sectors including industry, automotive and aerospace, the power density requirements are changing. The increased power density results in higher and higher ambient temperatures that electronics are exposed to. The response has been to move towards wide bandgap (WBG) semiconductor devices that can withstand much greater temperatures and can operate at much higher voltages than silicon. Additionally, these WBG devices deliver low drain-source on resistance (RDS_on) capabilities, enabling high current power modules that increase power density even further. This also requires the packaging to evolve in order to withstand the new requirements. As a result, researchers …


Thermal Resistance Characterization Of High-Voltage Sic Power Module, Landon Lemmons Dec 2023

Thermal Resistance Characterization Of High-Voltage Sic Power Module, Landon Lemmons

Mechanical Engineering Undergraduate Honors Theses

Researchers within the University of Arkansas Electrical Engineering Research Department have embarked on a project aimed at enhancing the thermal performance of high-voltage power modules. To aid in the progress of this project, the design, and development of a thermal tester device are needed. The primary objective of this device is to determine the various thermal properties of high-voltage power modules that the electrical engineering department has developed. Additionally, the project aims to facilitate electrical loading tests on power modules and provide researchers with the means to calibrate the power module in terms of thermal load. This project also possesses …


A Systematic Study Into The Design And Utilization Of Burn Wire As A Means Of Tensioning And Releasing Spacecraft Mechanisms Through Applied Joule Heating, Chandler Dye May 2023

A Systematic Study Into The Design And Utilization Of Burn Wire As A Means Of Tensioning And Releasing Spacecraft Mechanisms Through Applied Joule Heating, Chandler Dye

Mechanical Engineering Undergraduate Honors Theses

The joule heating characteristics of Nichrome burn wires, often used as a thermal cutting device in mechanisms designed to fasten and release CubeSat deployables, are examined in the following thesis. Wires ranging from 0.125 inches to 2 inches long, and diameters of 30 Ga and 40 Ga, are investigated through analytical calculations and thermal simulations based on heat transfer due to joule heating, and through physical circuitry-based experiments. The temperature data is used to generate heating curves to predict the time it takes for Nichrome wires to fail under varying testing parameters. This research aims to catalog a series of …


Reynolds-Averaged Navier-Stokes Cfd Simulation Of High-Speed Boundary Layers, Michael Tullis May 2023

Reynolds-Averaged Navier-Stokes Cfd Simulation Of High-Speed Boundary Layers, Michael Tullis

Mechanical Engineering Undergraduate Honors Theses

This paper presents an investigation of Reynolds-averaged Navier-Stokes (RANS) turbulence models used in computational fluid dynamics (CFD) simulations of boundary layer flow and heat transfer in high Mach number flows. This study evaluates an industry standard RANS turbulence model (k-omega SST) and a recently proposed modification to that model (Danis and Durbin [1]), and quantifies the accuracy for predicting high Mach number boundary layer flow. The test cases were previously documented by Duan et al. (2018), who used direct numerical simulation (DNS) to calculate boundary layer flow of an ideal gas over a flat plate at freestream Mach numbers ranging …


Generative Designs Of Lightweight Air-Cooled Heat Exchangers, Connor Miller May 2022

Generative Designs Of Lightweight Air-Cooled Heat Exchangers, Connor Miller

Mechanical Engineering Undergraduate Honors Theses

The development of high-performance air-cooled heat exchangers is required to permit the rapid growth of vehicle and aircraft electrification. In electric vehicles and airliners, the motors and power electronics are integrated into a compact space, leading to unprecedently high power density. To achieve higher overall thermal efficiency, the heat exchangers must be extremely light while maintaining their heat transfer performance and mechanical robustness. Recently advances in 3D metal printing, e.g., direct metal laser sintering, and selective laser melting, have enabled the manufacturing of high-performance robust heat exchangers by eliminating thermal boundary resistance and ensuring a uniform thermal expansion coefficient. Nonetheless, …


Deep Learning Strategies For Pool Boiling Heat Flux Prediction Using Image Sequences, Connor Heo Dec 2021

Deep Learning Strategies For Pool Boiling Heat Flux Prediction Using Image Sequences, Connor Heo

Graduate Theses and Dissertations

The understanding of bubble dynamics during boiling is critical to the design of advanced heater surfaces to improve the boiling heat transfer. The stochastic bubble nucleation, growth, and coalescence processes have made it challenging to obtain mechanistic models that can predict boiling heat flux based on the bubble dynamics. Traditional boiling image analysis relies on the extraction of the dominant physical quantities from the images and is thus limited to the existing knowledge of these quantities. Recently, machine-learning-aided analysis has shown success in boiling crisis detection, heat flux prediction, real-time image analysis, etc., whereas most of the existing studies are …


Thermometry Via Diffusion In Ferrous Core-Shell Nanoparticles For Induction Heating Applications, Hayden Carlton Dec 2021

Thermometry Via Diffusion In Ferrous Core-Shell Nanoparticles For Induction Heating Applications, Hayden Carlton

Graduate Theses and Dissertations

Induction heating causes the release of enormous amounts of heat from dispersed magnetic nanoparticles. While the rate of heat transfer can be easily quantified calorimetrically, measuring the temperature of the nanoparticles on the nanoscale presents experimental challenges. Fully characterizing the temperature and thermal output of these magnetic particles is necessary to gauge overall heating efficiency and to provide a more holistic understanding of heat transfer on the nanoscale. Herein, this dissertation seeks to develop a novel nanoparticle thermometry technique, which correlates diffusion behavior in core-shell nanoparticles to local temperature. Initial measurements suggested that heating silica capped ferrous nanoparticles (SCNPs) via …


Transient Performance And Melt Front Characterization Of Phase Change Materials, Tyler Stamps May 2021

Transient Performance And Melt Front Characterization Of Phase Change Materials, Tyler Stamps

Mechanical Engineering Undergraduate Honors Theses

Thermal management systems are often over-designed for average use in order to handle spikes in heat generation, which increases the spatial and financial requirements. One way to mitigate this is via the use of phase change materials (PCMs) as thermal buffers and storage media. This material type exhibits excellent latent heat at the sacrifice of conductivity. The present paper examines the melt front behavior of a common solid to liquid PCM, paraffin, experimentally and numerically. The experimental scenario was a block of PCM with a constant temperature heat flux introduced on one end and a constant temperature cold boundary condition …


Thermal Testing And Characterization Of Nanoparticles Synthesized For Biological Treatment, Tonie Butler May 2021

Thermal Testing And Characterization Of Nanoparticles Synthesized For Biological Treatment, Tonie Butler

Mechanical Engineering Undergraduate Honors Theses

The overall goal of this research project is to synthesize iron core, silica capped nanoparticles that, when they are exposed to a particular magnetic field, will react by increasing in temperature and emitting substantial thermal output. They will be injected into the human body for biological benefit by targeted thermal radiation. Once in the human body, ideally, they will be able to target a specific area, and then a magnetic field will be applied to induce thermal output through the process of hyperthermia. As the nanoparticles emit heat, they will mimic the natural bodily behavior seen by way of hyperthermia, …


Algorithm Development Of Topology Optimization For Pcm Based Heat Sinks, Diego L. De Los Reyes May 2021

Algorithm Development Of Topology Optimization For Pcm Based Heat Sinks, Diego L. De Los Reyes

Mechanical Engineering Undergraduate Honors Theses

With the inherent usage of the computer when dealing with additive manufacturing, it only makes sense to use that higher computing power through simulation and iterative design to use the mathematical concept of topology and optimize the kind of geometry and shapes to be produced for a certain application, especially thermal ones since most 3D printing applications focus on purely the mechanical. To determine what the shape will be, an objective function of how much heat can be dispersed from a hypothetical heat source, assumed to be a type of electronic device, is maximized while being constrained by other variables, …


Enhancement Of Phase Change Material Sorbitol By Nanoparticle Inclusion For Improving Thermal Energy Storage Capabilities, Joshua Kasitz May 2020

Enhancement Of Phase Change Material Sorbitol By Nanoparticle Inclusion For Improving Thermal Energy Storage Capabilities, Joshua Kasitz

Mechanical Engineering Undergraduate Honors Theses

Thermal management of electronic devices has become an increasingly vital field of study with the rapid miniaturization of many key electrical components. With the significant improvement of semiconductor manufacturing and intensified focus on interconnects, electronic devices have decreased in size at an incredible rate. Decreasing spatial requirements is essential to improving device capabilities as the electronic system is able to incorporate more components. Currently, electronic systems are drastically limited by the capabilities of their cooling mechanisms. Smaller devices lead to large increases in the energy density of the system and require more powerful cooling systems to maintain proper component operating …


Optimization Of The Practice Of Slow Cooling Steel Bars: A Redesign And Modernization Of Materials, Eryn Johnston Dec 2018

Optimization Of The Practice Of Slow Cooling Steel Bars: A Redesign And Modernization Of Materials, Eryn Johnston

Mechanical Engineering Undergraduate Honors Theses

Throughout the process of steel making, certain grades of steel are a higher risk for defects caused by the inability to quickly diffuse hydrogen through the steel when cooled to room temperature at a normal rate based on the ambient air temperature. To reduce the hydrogen flaking defects that are caused due to hydrogen entrapment in the steel, the process of slow cooling is utilized. This process reduces the cooling rate of steel bars by keeping them at a higher temperature for extended periods and in turn gives the hydrogen a chance to fully dissipate from the steel. In many …


Computer Simulation Of Pore Migration Due To Temperature Gradients In Nuclear Oxide Fuel, Ian Wayne Vance May 2017

Computer Simulation Of Pore Migration Due To Temperature Gradients In Nuclear Oxide Fuel, Ian Wayne Vance

Graduate Theses and Dissertations

A phase-field simulation model is being presented that captures the thermal-gradient-driven migration of pores in oxide fuel associated with fuel restructuring. The model utilizes a Cahn-Hilliard equation supplemented with an advection term to describe the vapor transport of fuel material through the pore interior due to gradients in vapor pressure. In addition, the model also captures changes in a migrating pores’ morphology. Simulations demonstrate that the model successfully predicts pore migration towards the hottest portion of the fuel, the centerline. The simulations also demonstrate changes in pore shape that are in agreement with previous experimental observations. Initially isotropic pores are …


Characterization Of Plastic Deformation Evolution In Single Crystal And Nanocrystalline Cu During Shock By Atomistic Simulations, Mehrdad Mirzaei Sichani May 2017

Characterization Of Plastic Deformation Evolution In Single Crystal And Nanocrystalline Cu During Shock By Atomistic Simulations, Mehrdad Mirzaei Sichani

Graduate Theses and Dissertations

The objective of this dissertation is to characterize the evolution of plastic deformation mechanisms in single crystal and nanocrystalline Cu models during shock by atomistic simulations. Molecular dynamics (MD) simulations are performed for a range of particle velocities from 0.5 to 1.7 km/s and initial temperatures of 5, 300 and 600 K for single crystal models as well as particle velocities from 1.5 to 3.4 km/s for nanocrystalline models with grain diameters of 6, 11, 16 and 26 nm. For single crystal models, four different shock directions are selected, <100>, <110>, <111> and <321>, and dislocation density behind the shock wave …


Modeling Radiation Heat Transfer For Building’S Cooling And Heating Loads: Considering The Role Of Clear, Cloudy, And Dusty Conditions In Hot And Dry Climates, Salem Ahmed Algarni Jul 2015

Modeling Radiation Heat Transfer For Building’S Cooling And Heating Loads: Considering The Role Of Clear, Cloudy, And Dusty Conditions In Hot And Dry Climates, Salem Ahmed Algarni

Graduate Theses and Dissertations

The influence of transient factors such as sky long wave radiation exchange and atmospheric aerosols (i.e., smog, and dust – made up of sand, clay, and silt) are not carefully considered in current building design and simulation models. Therefore, the research objective was to better understand and account for such variables, resulting in improved radiative predictive capabilities, especially important for hot and dry climates under different sky conditions including clean, cloudy, and dusty. Overall, results of this dissertation provided a better prediction method for sky long wave radiation exchange with a building’s roof and the impact of dust accumulation on …


Characterization Of Nano-Porous Si-Cu Composites To Enhance Lubricant Retention Impacting The Tribological Properties Of Sliding Surfaces, Julius Sheldon Morehead May 2015

Characterization Of Nano-Porous Si-Cu Composites To Enhance Lubricant Retention Impacting The Tribological Properties Of Sliding Surfaces, Julius Sheldon Morehead

Graduate Theses and Dissertations

As the expectations for modern machinery's tribological and thermal performances continue to rise, the retention of lubricant on the contact surfaces of their sliding components becomes an increasingly important issue. Friction and wear cause heat-related failures which lead to catastrophic damage to machinery. Evaporation of a lubricant's volatile constituents as well as lubricant migration leads not only to a reduction in lubricant quantity but also in its quality, thus facilitating component failures. In order to enhance component reliability, the surface should incorporate features that actively retain lubricants. The unique properties of nano-porous topographies such as their high surface area-to-volume ratio …


High Temperature Ltcc Based Sic Double-Sided Cooling Power Electronic Module, Hao Zhang May 2014

High Temperature Ltcc Based Sic Double-Sided Cooling Power Electronic Module, Hao Zhang

Graduate Theses and Dissertations

This objective of this dissertation research is to investigate a module packaging technology for high temperature double-sided cooling power electronic module application. A high-temperature wire-bondless low-temperature co-fired ceramic (LTCC) based double-sided cooling power electronic module was designed, simulated and fabricated. In this module, the conventional copper base plate is removed to reduce the thermal resistance between the device junctions to the heat sink and to improve the reliability of the module by eliminating the large area solder joint between the power substrate and the copper base plate. A low-temperature co-fired ceramic (LTCC) substrate with cavities and vias is used as …


Distribution Map Of Multi-Walled Carbon Nanotubes In A Refrigerant/Oil Mixture Within A 2.5 Ton Unitary Air-Conditioner, Warren Russell Long Dec 2012

Distribution Map Of Multi-Walled Carbon Nanotubes In A Refrigerant/Oil Mixture Within A 2.5 Ton Unitary Air-Conditioner, Warren Russell Long

Graduate Theses and Dissertations

In recent years, nanoparticles have received considerable attention as a potential additive to heat transfer fluids (i.e. refrigerant) in order to increase the heat transfer capabilities of these fluids. The potential of carbon nanotubes (CNTs) to exit the compressor, migrate throughout a vapor compression air conditioning system, and possibly foul the components of such a system was experimentally investigated in this research. Six grams of CNTs were dispersed in the polyol ester oil used by a 2.5 ton (8.79 kW) unitary air conditioning system, which was continuously operated for 168 hours. After this time, the unit was shut down and …


Development Of Spray Cooling For High Heat Flux Electronics, Jeremy Scott Junghans Dec 2011

Development Of Spray Cooling For High Heat Flux Electronics, Jeremy Scott Junghans

Graduate Theses and Dissertations

The thermal demands of modern day electronic systems require innovative thermal solutions. Spray cooling has proven to be able to cool heat fluxes orders of magnitude higher than traditional cooling methodologies. This work includes a comparison of spray cooling to standard thermal management methodologies. Key system parameters and considerations are discussed. The properties of available packaging materials and their effect on the reliability of a spray cooled system are presented. Parameters such as fluid temperature, droplet size, fluid velocity and flow rate all directly impact performance and are detailed in this work. Finally, results from of a wide range of …