Open Access. Powered by Scholars. Published by Universities.®

Mechanical Engineering Commons

Open Access. Powered by Scholars. Published by Universities.®

Articles 1 - 8 of 8

Full-Text Articles in Mechanical Engineering

Autonomous Material Refill For Swarm 3d Printing, William C. Jones May 2022

Autonomous Material Refill For Swarm 3d Printing, William C. Jones

Mechanical Engineering Undergraduate Honors Theses

3D printing currently offers robust and cheap rapid prototyping solutions. While standard 3D printing remains at the periphery of mass production, the technology serves as a starting point for the development of swarm manufacturing. Since swarm manufacturing is predicated upon autonomy, swarm technology companies such as AMBOTS are seeking to minimize human involvement in the swarm’s functions. At present, the 3D printing swarm consists of the printers, a transporter which can take them between job sites, and the floor tiles which provide power and support the build surfaces. To add to this ecosystem, this project is focused on the design …


Mathematical Modeling Of A Two Wheeled Robotic Base, Kathryn Remell May 2021

Mathematical Modeling Of A Two Wheeled Robotic Base, Kathryn Remell

Mechanical Engineering Undergraduate Honors Theses

This thesis presents the concept of using a two wheeled robot on the moon and briefly explores the requirements for successful long term operation in a lunar environment. The mathematical model for the motion of a robot with two fixed wheels on a differential drive with in a global reference frame. The robot is assumed to be balancing a platform so the mathematical model to balance the platform with wheel motors is also developed and briefly evaluated.


Silicone Tadpole: Research Into Soft Bodies, Danielle Fernandez May 2019

Silicone Tadpole: Research Into Soft Bodies, Danielle Fernandez

Mechanical Engineering Undergraduate Honors Theses

In this thesis, research is conducted in the area of soft robotics by building a soft tadpole that can deform with a specific air pressure. The goal is to mimic the motion of an organic tadpole in respect to its S-shaped tail movement. The angle of deformation, derived from material mechanic theories, ranges from 45 to 80 degrees for this type of movement. The design includes a head compartment which acts as a tank to transfer nitrogen pressure and a tail section that receives the said pressure and bends as a result. The tail section was designed with two rows …


A Nanoindentation Study Of The Fatigue Properties Of Al/A-Si Core-Shell Nanostructures, Jason Steck May 2018

A Nanoindentation Study Of The Fatigue Properties Of Al/A-Si Core-Shell Nanostructures, Jason Steck

Mechanical Engineering Undergraduate Honors Theses

Nanostructure-textured surfaces can reduce friction and increase the reliability of micro- and nanoelectromechanical systems (NEMS/MEMS). For MEMS incorporating moving parts, the fatigue properties of nanostructures pose a challenge to their reliability in long-term applications. In this study, the fatigue behavior of hemispherical Al/a-Si core-shell nanostructures (CSNs), bare hemispherical Al nanodots, and a flat Al/a-Si layered thin film have been studied using nanoindentation and nano-scale dynamic mechanical analysis (nano-DMA) techniques. Fatigue testing with nano-DMA shows that the deformation resistance of CSNs persists through 5.0 × 104 loading cycles at estimated contact pressures greater than 15 GPa. When the a-Si shell …


Particle Image Velocimetry Design & Installation, Zach Ritchie May 2016

Particle Image Velocimetry Design & Installation, Zach Ritchie

Mechanical Engineering Undergraduate Honors Theses

This work will mainly focus on the design, construction, and installation of the Particle Image Velocimetry (PIV) system in the Chemical Hazards Research Center wind tunnel. The PIV system utilizes a Class IV (double pulsed) laser, optics to produce a light sheet, timing circuitry, and a high-resolution camera (with buffered output) to measure a system’s velocity (two-dimensional) field by determining the displacement of particles over the time between laser pulses. For maximum mobility and functionality, the PIV system was installed in the center of the tunnel on a moveable cart with the laser and camera mounted to an adjustable support. …


Development Of Miniature Hybrid Rockets For Orbital Upkeep And Transfer Applications In Nano/Pico-Satellites, Derek Willingham May 2008

Development Of Miniature Hybrid Rockets For Orbital Upkeep And Transfer Applications In Nano/Pico-Satellites, Derek Willingham

Mechanical Engineering Undergraduate Honors Theses

This research has developed and constructed a successful miniature hybrid rocket test assembly for research into hybrid rocket scaling issues. It is hoped that such systems will find eventual integration into small satellites. The test assembly houses 3" fuel grains and provides an inlet for gaseous oxidizer. Although far from complete, preliminary data were taken with PMMA and GOx and some useful conclusions were drawn that will benefit future research into this topic. Fuel grains with combustion chambers whose diameters range from 1/16" to 3/8" were tested at different flow rates and thrust data gathered. Maximum flow information was gathered …


Restart Capabilities Of Hybrid Rocket Motor Utilizing Gaseous Propane And Oxygen Injection System, Joseph Gracy May 2008

Restart Capabilities Of Hybrid Rocket Motor Utilizing Gaseous Propane And Oxygen Injection System, Joseph Gracy

Mechanical Engineering Undergraduate Honors Theses

Hybrid rockets have become an increasingly popular application in professional and amateur rocketry for their outstanding performance and reliability. An issue pressing the marketability and functionality of these rockets is the ability to restart with an exclusive system after primary ignition. Research and development of a system that can be used reliably in either application to achieve restart under various conditions has been made recently using dual injection of GOX and C3H8 using a 200kV ignition system while implementing a polymethylmethacrylate (PMMA) formable polymer as primary fuel. The system used a manual valve arrangement for control. The design features most …


A Review Of Variable Valve Timing Devices, Paul Shelton May 2008

A Review Of Variable Valve Timing Devices, Paul Shelton

Mechanical Engineering Undergraduate Honors Theses

Variable valve timing (VVT) has evolved from simple, manual controlled engine management to automatic, electronic works of engineering. Starting from the need for more power and extending into fuel efficiency and low emissions, VVT has evolved from the constant changing of needs. This paper summarizes various devices used to control the timing of valves from the early 1920s up until 2007.